Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
Ta có: \(n-4⋮n-1\)
\(\Rightarrow\left(n-1\right)-3⋮n-1\)
Vì \(n-1⋮n-1\) nên để \(\left(n-1\right)-3⋮n-1\)
Khi \(3⋮n-1\Rightarrow n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-2;0;2;4\right\}\)
Vậy ...
n-4chia hết cho n-1
suy ra n-1-3chia hết cho n-1
suy ra 3chia hết cho n-1
còn lại bạn tự làm nha
1. A.
\(n+2⋮n+1\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà \(\left(n+1\right)⋮\left(n+1\right)\)
Nên \(1⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)€\)Ư(1)
(n+1) € {1;—1}
TH1: n+1=1 TH2: n+1=—1
n =1–1 n =—1 —1
n =0 n =—2
Vậy n€{0;—2}
1a)
n+2 chia hết cho n-1
hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)
Mà (n-1) chia hết cho n-1
nên 3 chia hết cho n-1
Suy ra n-1 thược Ư(3)={1;-1;3;-3}
Suy ra n thuộc {2;0;4;-2}
b) 3n-5 chia hết cho n-2
hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)
3(n-2)+1 chia hết cho n-2
Mà 3(n-2) chia hết cho n-2
nên 1 chia hết cho n-2
Suy ra n-2 thược Ư(1)={1;-1}
Suy ra n thuộc {3;1}
Ta có:n2 - 2=n.n+6-8=n.(n+3)-8=(n+3)-8
Suy ra n+3 thuộc UC(8)
Do đó:UC(8)là:[1,2,4,8]
Ta có:
n+3=1; n=1-3=-2
n+3=2; n=2-3=-1
n+3=4; n=4-3=1
n+3=8; n=8-3=5
n2 - 2 chia hết cho n + 3
=> n(n + 3) - (n2 - 2) chia hết cho n + 3
=> n2 + 3n - n2 - 2 chia hết cho n + 3
=> 3n - 2 chia hết cho n + 3
=> 3(n + 3) - (3n - 2) chia hết cho n + 3
=> 3n + 9 - 3n - 2 chia hết cho n + 3
=> 7 chia hết cho n + 3
=> n + 3 thuộc {-1; 1; -7; 7}
=> n thuộc {-4; -2; -10; 4}
Vậy...
a)3n+2/n-1=>3n-3+5/n-1.Vì3n-3/n-1=>5/n-1=>n-1 thuộc ước 5
b)3n+24/n-4=>3n-12+36/n-4.Vì 3n-12/n-4=>36/n-4=>n-4 thuộc ước 36
c)n^2+5/n+1=>n*n+5/n+1=>n*(n+1)+4/n+1.Vì n*(n+1)/n+1=>4/n-1=>n+1 thuộc ước 4
a/ \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3}{n-1}+6\)
=>n-1 thuộc ƯỚC của 3
=>n-1=1=>n=2
=>n-1=-1=>n=0
=>n-1=3=>n=4
=>n-1=-3=>n=-1
b/ \(\frac{3\left(n+4\right)+12}{n-4}=\frac{3}{n-4}+13\)
=>n-4 thuộc ƯỚC của 3
=>n-4=1=>n=5
=>n-4=-1=>n=3
=>n-4=3=>n=7
=>n-4=-3=>n=1
câuc(uoc cua5) tương tự mình giải vậy ko bít đúng ko nữa
1) n + 3 chia hết cho n-2
(n-2) + 5 chia hết cho n-2
Mà n-2 chia hết cho n-2
=> 5 chia hết cho n-2
=> n-2 thuộc Ư(5)
Ư(5)={1,5}
n - 2 = 1
n = 3
n - 2 -= 5
n = 7
n thuộc {3,7}
a/ \(n+3⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)\)
Suy ra :
+) n - 2 = 1 => n = 3
+) n - 2 = 5 => n = 7
+) n - 2 = -1 => n = 1
+) n - 2 = -5 => n = -3
Vậy ............
b/ \(2n+1⋮n-3\)
Mà \(n-3⋮n-3\)
\(\Leftrightarrow\hept{\begin{cases}2n+1⋮n-3\\2n-6⋮n-3\end{cases}}\)
\(\Leftrightarrow7⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(7\right)\)
Suy ra :
+) n - 3 = 1 => n = 4
+) n - 3 = 7 => n = 10
+) n - 3 = -1 => n = 2
+) n - 3 = -7 => n = -4
Vậy ..
n+7 chia hết cho n+2
n+7 =( n+2)+5 chia hết cho n+2
mà n+2 chia hết cho n+2 =>5 chia hết cho n+2
n+2 \(\in\)Ư(5)
n+2 \(\in\){-1;-5;1;5}
n \(\in\){-3;-8;-2;3}
n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
Mà n + 2 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư ( 5 )
=> n + 2 thuộc { 1 ; - 1 ; 5 ; - 5 }
=> n thuộc { - 1 ; - 3 ; 3 ; - 7 }
TI - CK CHO MÌNH NHÉ
n-7 chia hết cho n-5
=> n-5-2 chia hết cho n-5
=> 2 chia hết cho n-5
=> n-5 thuộc Ư(2)={1;-1;2;-2}
=> n thuộc {6;4;7;3}
Mình cảm ơn bạn nhé