K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PL
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
BM
0
LL
0
DL
2
17 tháng 7 2018
gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:
\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)
với x = 1 thì: a + b = 5 (1)
với x = -1 thì: -a + b = -5 (2)
từ (1); (2) => b = 0; a = 5
=> số dư của phép chia là 5x
CN
1
AH
Akai Haruma
Giáo viên
21 tháng 8
Lời giải:
Theo định lý Bê-du về phép chia đa thức, thương của $f(x)$ khi chia cho $q(x)=x-1$ là:
$f(1)=1^3+1^9+1^{27}+1^{243}=4$
M
0
M
0
TT
2