Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9
\(5^2\equiv1\left(mod12\right)\Rightarrow5^{2010}\equiv1\left(mod12\right)< 1>.\)
\(7^2\equiv1\left(mod12\right)\Rightarrow7^{10}\equiv1\left(mod12\right)< 2>.\)
\(Từ< 1>và< 2>\Rightarrow5^{2010}+7^{10}\equiv2\left(mod12\right).\)
\(\Rightarrow5^{2010}+7^{10}:12dư2.\)
Vậy \(5^{2010}+7^{10}:12dư2\)
Ta có số dư lớn nhất có thể là : 12-1 = 11
Vậy số đó là 12.28+11 = 347
Số dư sẽ là:
12 - 1 = 11
=> Số bị chia là:
23 x 12 + 11 = 347
Gọi 6 số lẻ liên tiếp có dạng:2k+1;2k+3;2k+5;2k+7;2k+9;2k+11.
Tổng của chúng là:
2k+2k+2k+2k+2k+2k+1+3+5+7+9+11.
=12k+36
=12.(k+3) chia hết cho 12.
Với tổng 6 số chẵn chuyển thành 2k;2k+2;...; rồi làm tương tự.
Chúc em học tốt^^
1 phép chia có số chia là 26, số dư là 15, tổng của số bị chia, số chia, thương, số dư là 1352. Tìm số bị chia và thương
\(\text{Giải}\)
\(5^{70}+7^{50}=25^{35}+49^{25}\)
\(25\equiv1\left(\text{mod 12}\right);49\equiv1\left(\text{mod 12}\right)\)
\(\Rightarrow5^{70}+7^{50}\equiv\left(1+1\right)\left(\text{mod 12}\right)\equiv2\left(\text{mod 12}\right)\)
\(\Rightarrow\text{5^70+7^50 chia 12 dư 2}\)
ta có : \(5^2\equiv1\)( mod 12 ) \(\Rightarrow\left(5^2\right)^{35}\equiv1\)( mod 12 )
hay \(5^{70}\equiv1\)( mod 12 ) (1)
\(\Rightarrow\left(7^2\right)\equiv1\)( mod 12 ) \(\Rightarrow\left(7^2\right)^{25}\equiv1\)( mod 12 ) hay \(7^{50}\equiv1\)( mod 12 ) ( 2 )
từ ( 1 ) ; ( 2 ) suy ra \(5^{70}+7^{50}\div12\) dư 2