Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^2\equiv1\left(mod12\right)\Rightarrow5^{2010}\equiv1\left(mod12\right)< 1>.\)
\(7^2\equiv1\left(mod12\right)\Rightarrow7^{10}\equiv1\left(mod12\right)< 2>.\)
\(Từ< 1>và< 2>\Rightarrow5^{2010}+7^{10}\equiv2\left(mod12\right).\)
\(\Rightarrow5^{2010}+7^{10}:12dư2.\)
Vậy \(5^{2010}+7^{10}:12dư2\)
Ta có số dư lớn nhất có thể là : 12-1 = 11
Vậy số đó là 12.28+11 = 347
Số dư sẽ là:
12 - 1 = 11
=> Số bị chia là:
23 x 12 + 11 = 347
Gọi 6 số lẻ liên tiếp có dạng:2k+1;2k+3;2k+5;2k+7;2k+9;2k+11.
Tổng của chúng là:
2k+2k+2k+2k+2k+2k+1+3+5+7+9+11.
=12k+36
=12.(k+3) chia hết cho 12.
Với tổng 6 số chẵn chuyển thành 2k;2k+2;...; rồi làm tương tự.
Chúc em học tốt^^
1 phép chia có số chia là 26, số dư là 15, tổng của số bị chia, số chia, thương, số dư là 1352. Tìm số bị chia và thương
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
ta có \(5^2\equiv1\left(mod12\right)\Rightarrow5^{2018}\equiv1\left(mod12\right)\)
\(7^2^{ }\equiv1\left(mod12\right)\Rightarrow7^{10}\equiv1\left(mod12\right)\)