K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

làm sao mà đc dư 6 vậy bạn PHẠM XUÂN QUYỀN

20 tháng 12 2015

Năm ngoái kiểm tra một tiết có bài này nhưng mình quên rồi

3 tháng 6 2015

Cái này sử dụng phép đồng dư(lên lớp 9 mới học ), nếu bạn chưa học lớp 9 thì mình ra kết quả lun nha

Số dư là 15 

Chúc bạn học tốt ^_^

14 tháng 9 2016

Ta có : 

\(5^6\equiv1\left(mol7\right)\)

\(\Rightarrow\left(5^6\right)^{335}\equiv1^{335}\left(mol7\right)\)

\(\Rightarrow5^{2010}\equiv1\left(mol7\right)\)

\(\Rightarrow5^{2010}.5^3=1.5^3\left(mol7\right)\)

\(\Rightarrow5^{2013}=125\left(mol7\right)\)

Mà : \(125\equiv6\left(mol7\right)\)

\(\Rightarrow5^{2013}\equiv6\left(mol7\right)\)

Vậy \(5^{2013}\) chia 7 dư 6 

28 tháng 7 2016

Ta có :

\(5^6\text{≡}1\left(mod7\right)\)

\(\Rightarrow\left(5^6\right)^{335}\text{≡}1^{335}\left(mod7\right)\)

\(\Rightarrow5^{2010}\text{≡}1\left(mod7\right)\)

\(\Rightarrow5^{2010}.5^3\text{≡}1.5^3\left(mod7\right)\)

\(\Rightarrow5^{2013}\text{≡}125\left(mod7\right)\)

Mà \(125\text{≡}6\left(mod7\right)\)

\(\Rightarrow5^{2013}\text{≡}6\left(mod7\right)\)

Vậy \(5^{2013}\)chia 7 dư 6.

28 tháng 7 2016

Ta có 

5 đồng dư với -2 \(\in\)( Mod 7 )

=> \(5^{2013}\) đồng dư với \(-2^{2013}\)

Mà \(-2^{2013}\)\(\left(-2^3\right)^{671}\)

\(-8^{671}\)đồng dư với \(1^{671}\)đồng dư với 1 theo (Mod 7)

Vậy \(5^{2013}\) chia cho 7 có số dư là 1