K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

\(2012^{2013}-1^{2013}=\left(2013-1\right)\left(1+2013+2013^2+2013^3+...+2013^{2012}\right)\)chia hết cho \(1+2013+2013^2+...+2013^{2012}\)
Có \(318127<1+2013+2013^2+...+2013^{2012}\)
-> dư 318127

nói là làm đi chứ đứa bảo dễ

2 tháng 8 2019

Ta có: 210 = 1024 \(\equiv\) -1 (mod25)

\(\Rightarrow\) 22010 = (210)201 \(\equiv\) (-1)201 \(\equiv\) -1 (mod25)

\(\Rightarrow\) 22012 = 22010 . 4 \(\equiv\) (-1) . 4 \(\equiv\) -4 \(\equiv\) 21 (mod25)

Vậy 22012 chia 25 dư 21

30 tháng 9 2019

n^2 chia cho:

+) 3 dư 0,1

+) 4 dư 0,1,3 (tương tự)

n^3:

+)7 dư 0,1,6

+) 5 dư 0,1,2,3,4

Bạn muốn giải chi tiết thì đặt n=3k;3k+1 chẳng hạn

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)