Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=1+2+2^2+2^3+2^4+2^5+...+2^{2004}+2^{2005}+2^{2006}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2004}+2^{2005}+2^{2006}\right)\)
\(A=7+2^3\left(1+2+2^2\right)+...+2^{2004}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{2004}.7\)
\(A=7\left(1+2^3+...+2^{2004}\right)\) chia hết cho 7
b)\(2^{2006}=2^{2004}.2^2=\left(2^6\right)^{334}.4=64^{334}.4\)
Mặt khác: \(64\equiv1\left(mod7\right)\Rightarrow64^{334}\equiv1\left(mod7\right)\Rightarrow64^{334}.4\equiv4\left(mod7\right)\)
=>22006 chia 7 dư 4
A = 2 + 22 + 23 +....+ 299
= (2 + 22 + 23) + .... + (297 + 298 + 299)
= 2.(1 + 2 + 4) + .... + 297.(1 + 2 + 4)
= 2.7 + ..... + 297.7
= 7.(2 + .... + 297) chia hết cho 7
A=2+22+23+...+299
A=2(1+2+4)+23(1+2+4)+25(1+2+4)+...+297(1+2+4)
A=2.7+23.7+25.7+...+297.7
A=7(2+23+25+27+...+297)
nên biều thức trên chia hết cho 7
A=2+22+23+...+299
A=2(1+2+4+8+16)+25(1+2+4+8+16)+....+295(1+2+4+8+16)
A=2.31+25.31+...+295.31
A=31(2+25+...+295)
vậy A chia hết cho 31 nên số dư của 31 chia A là 0
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
\(2^3\equiv1\left(mod7\right)\)
\(\Rightarrow\left(2^3\right)^{668}.2^2\equiv1^{668}.2^2\left(mod7\right)\)
\(\Rightarrow2^{2006}\equiv4\left(mod7\right)\)
-Vậy: \(2^{2006}\) chia 7 dư 4
\(2^{2006}=\left(2^{17}\right)^{118}=131072^{118}\)
Ma \(131072\equiv4\left(mod7\right)\)=>\(131072^{118}=4\left(mod7\right)\)
=> 131072^118 hay 2^2006 chia 7 du 3