K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

\(\left(\sqrt{1998}+\sqrt{2000}\right)^2=1998+2000+2.1998.2000=2.1999+2.1998.2000\)

\(\left(2\sqrt{1999}\right)^2=4.1999=2.1999+2.1999\)

Mà  \(2.1998.2000>2.1999\)

\(=>\left(\sqrt{1998}+\sqrt{2000}\right)^2>\left(2\sqrt{1999}\right)^2=>\sqrt{1998}\)+\(\sqrt{2000}>2\sqrt{1999}\)

12 tháng 6 2016

Câu trả lời đây bạn nhé ^^

http://olm.vn/hoi-dap/question/602523.html

12 tháng 6 2016

Ta sẽ chứng minh bất đẳng thức sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)

\(\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2< \frac{a+b}{2}\Leftrightarrow\frac{a+b+2\sqrt{ab}}{4}< \frac{a+b}{2}\Leftrightarrow a+b+2\sqrt{ab}< 2\left(a+b\right)\Leftrightarrow-\left(a-2\sqrt{ab}+b\right)< 0\Leftrightarrow-\left(\sqrt{a}-\sqrt{b}\right)^2< 0\)(luôn đúng)

Vậy bất đẳng thức được chứng minh.

Áp dụng : \(\frac{\sqrt{1998}+\sqrt{2000}}{2}< \sqrt{\frac{1998+2000}{2}}=\sqrt{1999}\)

\(\Rightarrow\sqrt{1998}+\sqrt{2000}< 2.\sqrt{1999}\)

12 tháng 6 2016

Phần chứng minh bất đẳng thức bạn ghi thêm điều kiện a,b > 0 nhé

NM
8 tháng 8 2021

xét dãy số \(1998,19981998,199819981998,...\)đến số có 1999 bộ 1998
vậy dãy trên gồm 1999 số

giả sử rằng không có số nào chia hết cho 1999

nên 1999 trên chỉ có thể rơi vào các trường hợp chia 1999 dư 1, dư 2, ..., dư 1998

do có 1998 khả năng số dư, nên ít nhất có hai số trong dãy là cùng số dư khi chia cho 1999 ( nguyên lí dirichlet)

giả sử hai số đó co x và y bộ 1998 ( x>y

ta có hiệu hai số đó là tích của 10^(4y) và số có (x-y) bộ 1998 phải chia hết cho 1999

điều này là vô lý vì 10^(4y) và số có (x-y) bộ là không chia hết cho 1999

vậy giả sử ban đầu là sai hay tồn tại số chia hết cho 1999

30 tháng 9 2019

\(\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\)

\(=\frac{1}{\sqrt{n-1}\sqrt{n}\left(\sqrt{n-1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n-1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)

Sau đó bạn tự áp dụng vào nhé!