Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số cần tìm có dạng là ab(Điều kiện: \(a,b\in N\); 0<a<10; \(1\le b< 10\))
Vì tổng các chữ số bằng 9 nên ta có phương trình: a+b=9(1)
Vì 8 lần chữ số này bằng chữ số kia nên ta có phương trình: 8a=b(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=9\\8a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+8a=9\\b=9-a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9a=9\\b=9-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=8\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 18
Gọi chữ số hàng chục là x (x là các số tự nhiên từ 1 tới 9)
Gọi chữ số hàng đơn vị là y (y là các số tự nhiên từ 0 tới 9)
\(\Rightarrow\) Giá trị của số đó là: \(10x+y\)
Do số đó bằng tổng các chữ số cộng với 9 nên:
\(10x+y=x+y+9\Rightarrow9x=9\Rightarrow x=1\)
Số đó bằng 2 lần hiệu 2 chữ số của nó và cộng thêm 20:
Trường hợp 1: \(10x+y=2\left(x-y\right)+20\)
\(\Rightarrow10.1+y=2-2y+20\)
\(\Rightarrow3y=12\Rightarrow y=4\)
Trường hợp 2: \(10x+y=2\left(y-x\right)+20\)
\(\Rightarrow10.1+y=2y-2+20\)
\(\Rightarrow y=-8< 0\) (loại)
Vậy số đó là 14
theo bài ra ta có hệ pt:
a+b=5
a^2+b^2=13
giai he pt ra ta dc b=2hoacb=3
Gọi số cần tìm có dạng là \(\overline{ab}\)
Theo đề, ta có hệ:
a+b=9 và 8a=b
=>a=1; b=8
Gọi số đó là ab, ta có hpt: a2 + b2 = ab + a.b và ab + 36 = ba
=> a = 7; b = 8 => ab = 78
gọi số đó là ab
theo đề bài có hệ phương trình
a^2 + b^2 = ab + a x b
ab + 36 = ba
giải hệ được ab là 48
Bài 2:
Số thư nhất là (80+14)/2=47
Số thứ hai là 47-14=33
Bài 3:
Gọi số thứ nhât là x
=>Số thứ hai là 7-x
Theo đề, ta co hệ: \(\dfrac{1}{x}+\dfrac{1}{7-x}=\dfrac{7}{12}\)
=>\(\dfrac{7-x+x}{x\left(7-x\right)}=\dfrac{7}{12}\)
=>x(7-x)=12
=>x(x-7)=-12
=>x^2-7x+12=0
=>x=3 hoặc x=4
=>Hai số cần tìm là 3;4
Bài 2 :
Gọi \(x,y\) là 2 số đó
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=80\\x-y=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=47\\y=33\end{matrix}\right.\)
Vậy 2 số đó là 47 và 33
Bài 3 :
Gọi \(x,y\) là 2 số cần tìm
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=7\\x-y=\dfrac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{91}{24}\\y=\dfrac{77}{24}\end{matrix}\right.\)
Vậy 2 số đó là \(\dfrac{91}{24};\dfrac{77}{24}\)
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số: 15
Gọi số cần tìm là ab . Nếu b>a thì gọi số bé hơn là a, số lớn hơn là b Theo đề bài, ta có:
a+b=9(1)
8a=b(2)
Xét (1):
a+b=9
a+8a=9
<=>9a=9
<=>a=1
<=>b=8
Vậy số cần tìm là 18(đây cho trường hợp a<b, còn nếu trường hợp a>b thì ab = 81)