Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi a,b,c la ca chu so theo thu tu tu nho den lon theo ti le voi 1;2;3
a/1=b/2=c/3 va a+b+c=72
Ap dung tinh chat day ti so bang nhau :
a/1=b/2=c/3=a+b+c/1+2+3=72/6=12
Suy ra :a/1=12=>a=1.12=12
b/2=12=>b=2.12=24
c/5=12=>c=5.12=60
Lời giải:
Gọi 3 chữ số tạo nên số đó là $a,b,c$ tỉ lệ với $1,2,3$
Đặt $\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=t$
$a=t; b=2t; c=3t$
Số đó là bội của $72$ nên chia hết cho $9$
$\Rightarrow a+b+c\vdots 9$
$t+2t+3t\vdots 9$
$6t\vdots 9$
$\Rightarrow t\vdots 3$
$\Rightarrow t=0; 3; 6;....$
Nếu $t\geq 6$ thì $c=3t>10$ (vô lý)
Nếu $t=0$ thì $a=b=c=0$ (vô lý)
Vậy $t=3$
$\Rightarrow a=3; b=6; c=9$
Vì số đó chia hết cho $72$ nên số đó là $936$
1) Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
Gọi các chữ số của số đó là \(a,b,c\left(a< b< c\right)\)
Theo đề bài , ta có : \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Vì số đó là bội của 27 nên cũng là bội của 9 \(\Rightarrow a+b+c⋮9\) \(\left(1\right)\)
Có \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)\(\Rightarrow\frac{a}{1}+\frac{b}{2}+\frac{c}{3}=\frac{a+b+c}{6}\)
Ta có : \(\frac{a}{1}\)là số nguyên nên \(a+b+c⋮6\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a+b+c\in BC\left(9;6\right)=B\left(18\right)\)
Ta có : \(3\le a+b+c\le27\)nên \(a+b+c=18\)
\(\Rightarrow\frac{q}{1}=\frac{b}{2}=\frac{c}{3}=\frac{18}{6}=3\)
\(\Rightarrow a=3;b=6;c=9\)
Vậy số cần tìm là 369
Gọi các chữ số trong số cần tìm lần lượt là a;b;c
Vơi \(a:b:c=1:2:3\)
\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Vì số đó chia hết cho 72
=> số đó chia hết cho 8 và 9
Mà \(0< a+b+c< 27\)
=> \(\left[\begin{array}{nghiempt}a+b+c=9\\a+b+c=18\end{array}\right.\)
(+) Với a+b+c=9
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{9}{6}=\frac{3}{2}\)
\(\Rightarrow\begin{cases}a=\frac{3}{2}\\b=3\\c=\frac{9}{2}\end{cases}\) ( Loại )
(+) Với a+b+c=18
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{18}{6}=3\)
\(\Rightarrow\begin{cases}a=3\\b=6\\c=9\end{cases}\)
=> Số cần tìm \(\in\left\{369;396;936;963;639;693\right\}\)
Mặt khác số cần tìm chia hết cho 8
=> Số cần tìm là 936
Gọi abc là số cần tìm.
\(\Rightarrow abc⋮27\Rightarrow abc⋮9\Rightarrow a+b+c⋮9\)
Có: \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}\)
Mà: \(0\le a+b+c\le27\Rightarrow a+b+c\in\left\{9;18;27\right\}\)
Xét các yêu cầu tỉ lệ 1,2,3 được \(\left(a,b,c\right)=\left(3,6,9\right)\)