Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{abc}\) (a,b,c \(\in N\), 10 > a,b,c \(\ge0\))
TH1: \(\overline{ab}=4\overline{bc}\)
=> \(10a+b=40b+4c\)
=> \(10a=39b+4c\)
Mà b\(\ge1,c\ge0\) => \(39b+4c\ge39\)
=> 10a \(\ge39\)
=> a \(\ge4\)
Do \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\in\left\{49;64;81\right\}\)
- Với \(\overline{ab}=49\) => \(\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\) => 4c = -311 (loại)
- Với \(\overline{ab}=64=>\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\) => 4c = - 96 (loại)
- Với \(\overline{ab}=81=>\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\) => 4c = 41 => c = \(\dfrac{41}{4}\) (loại)
TH2: \(4\overline{ab}=\overline{bc}\)
=> 40a + 4b = 10b + c
=> 40a = 6b + c
Mà \(b\le9;c\le9\)
=> 6b + c \(\le63\)
=> 40a \(\le63\)
=> a \(\le1\)
=> a = 1
Mà \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\) = 16
=> b = 6
=> c = 4
Vậy số cần tìm là 164
Do số đó bằng bình phương 2 chữ số cuối nên 2 số cuối ko thể đồng thời bằng 0 (số đó khi đó cũng bằng 0, trái giả thiết nó có nhiều hơn 2 chữ số).
Gọi số đó có dạng \(\overline{xab}=100x+10a+b\) (với x là 1 số có thể nhiều hơn 1 chữ số và a;b là các chữ số từ 0 đến 9)
Theo đề bài:
\(100x+10a+b=\left(10a+b\right)^2\)
\(\Rightarrow100x+10a+b=100a^2+20ab+b^2\)
\(\Rightarrow10\left(10x+a-10a^2-2ab\right)=b\left(b-1\right)\) (1)
Do vế trái chia hết cho 10 \(\Rightarrow\) vế phải chia hết cho 10
\(\Rightarrow b\left(b-1\right)⋮10\)
Ta có các trường hợp sau:
TH1: \(b=0\) thế vào (1)
\(\Rightarrow10x+a-10a^2=0\)
\(\Rightarrow a=10\left(a^2-x\right)\)
\(\Rightarrow a⋮10\Rightarrow a=0\) (loại do a;b không thể đồng thời bằng 0)
TH2: \(b=1\) thế vào (1)
\(\Rightarrow10x-10a^2-a=0\Rightarrow10\left(x-a^2\right)=a\)
Tương tự suy ra \(a=0\Rightarrow x=0\Rightarrow\) số đó bằng 1 (loại do 1 chỉ có 1 chữ số)
TH3: \(b=5\) thế vào (1)
\(\Rightarrow10\left(10x+a-10a^2-10a\right)=20\)
\(\Rightarrow10x-10a^2+a-10a=2\)
\(\Rightarrow a-2=10\left(a^2+a-x\right)\)
\(\Rightarrow a-2⋮10\Rightarrow a=2\)
\(\Rightarrow10\left(2^2+2-x\right)=0\Rightarrow x=6\)
Số đó là \(625\)
TH4: \(b-1=5\Rightarrow b=6\) thế vào (1)
\(\Rightarrow10\left(10x+a-10a^2-12a\right)=30\)
\(\Rightarrow10x-10a^2-11a=3\)
\(\Rightarrow10\left(x-a^2-a\right)=a+3\)
\(\Rightarrow a+3⋮10\Rightarrow a=7\)
\(\Rightarrow10\left(x-7^2-7\right)=10\)
\(\Rightarrow x=57\)
Số đó là \(5776\)
Vậy có 2 số thỏa mãn yêu cầu là \(625\) và \(5776\)
Gọi số cần tìm là ab
Ta có:a+b=7
và a2+b2=230=>a và b=5
=>Có các cặp số 5 và 4;5 và 3;5 và 2;4 và 3(1)
2 x ab=ab=>20b+2a=10a+b=>19b=8a
Trong các cặp số nêu ở (1),chỉ có 2.19=38=8.5=40
=>a=5;b=2
Vậy số cần tìm là 52
giải : gọi số cần tìm là ab (a khác 0; a,b<10)
ta có : ab+ba=10a+b+10b+aq=11a+11b=11(a+b)
vì a+b là số chính phương nên a+b chia hết cho 11
mà 1 lớn hơn hoặc bằng a <10
0 lớn hơn hoặc bằng b<10
= 1 lớn hơn hoặc bằng a+b<20
=a+b=11
ta có bảng sau :
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
vậy có 8 số thỏa mãn đề bài
Cách 1: Tách số hạng thứ hai
x2 – 6x + 8 = x2 – 2x – 4x + 8
= x(x – 2) – 4( x – 2)
= (x – )(x – 4).
Cách 2: Tách số hạng thứ 3
x2 - 6x + 8 = x2 – 6x + 9 – 1
= (x – 3)2 – 1 = ( x – 3 – 1)(x – 3 + 1)
= (x – 4)( x – 2).
Cách 3: x2 – 6x + 8 = x2 – 4 – 6x + 12
= ( x – 2)(x + 2) – 6(x – 2)
= (x – 2)(x – 4)
Số tự nhiên có hai chữ số, mà biết nó bình phương của số đó là một số có bốn chữ số mà hai chữ số cuối cùng là chính là số đó. Số đó là: 76^2=5776
tick nha bạn
nhớ ghi cách làm