K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

Gọi số cần tìm là \(\overline{abc}\) (a,b,c \(\in N\), 10 > a,b,c \(\ge0\))

TH1: \(\overline{ab}=4\overline{bc}\)

=> \(10a+b=40b+4c\)

=> \(10a=39b+4c\)

Mà b\(\ge1,c\ge0\) => \(39b+4c\ge39\)

=> 10a \(\ge39\)

=> a \(\ge4\)

Do \(\overline{ab}\) là số chính phương

=> \(\overline{ab}\in\left\{49;64;81\right\}\)

- Với \(\overline{ab}=49\) => \(\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\) => 4c = -311 (loại)

- Với \(\overline{ab}=64=>\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\) => 4c = - 96 (loại)

- Với \(\overline{ab}=81=>\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\) => 4c = 41 => c = \(\dfrac{41}{4}\) (loại)

TH2: \(4\overline{ab}=\overline{bc}\)

=> 40a + 4b = 10b + c

=> 40a = 6b + c

Mà \(b\le9;c\le9\)

=> 6b + c \(\le63\)

=> 40a \(\le63\)

=> a \(\le1\)

=> a = 1

Mà \(\overline{ab}\) là số chính phương

=>  \(\overline{ab}\)  = 16

=> b = 6

=> c = 4

Vậy số cần tìm là 164

NV
20 tháng 1

Do số đó bằng bình phương 2 chữ số cuối nên 2 số cuối ko thể đồng thời bằng 0 (số đó khi đó cũng bằng 0, trái giả thiết nó có nhiều hơn 2 chữ số).

Gọi số đó có dạng \(\overline{xab}=100x+10a+b\) (với x là 1 số có thể nhiều hơn 1 chữ số và a;b là các chữ số từ 0 đến 9)

Theo đề bài:

\(100x+10a+b=\left(10a+b\right)^2\) 

\(\Rightarrow100x+10a+b=100a^2+20ab+b^2\)

\(\Rightarrow10\left(10x+a-10a^2-2ab\right)=b\left(b-1\right)\) (1)

Do vế trái chia hết cho 10 \(\Rightarrow\) vế phải chia hết cho 10

\(\Rightarrow b\left(b-1\right)⋮10\)

Ta có các trường hợp sau:

TH1: \(b=0\) thế vào (1)

\(\Rightarrow10x+a-10a^2=0\)

\(\Rightarrow a=10\left(a^2-x\right)\)

\(\Rightarrow a⋮10\Rightarrow a=0\) (loại do a;b không thể đồng thời bằng 0)

TH2: \(b=1\) thế vào (1)

\(\Rightarrow10x-10a^2-a=0\Rightarrow10\left(x-a^2\right)=a\)

Tương tự suy ra \(a=0\Rightarrow x=0\Rightarrow\) số đó bằng 1 (loại do 1 chỉ có 1 chữ số)

TH3: \(b=5\) thế vào (1)

\(\Rightarrow10\left(10x+a-10a^2-10a\right)=20\)

\(\Rightarrow10x-10a^2+a-10a=2\)

\(\Rightarrow a-2=10\left(a^2+a-x\right)\)

\(\Rightarrow a-2⋮10\Rightarrow a=2\)

\(\Rightarrow10\left(2^2+2-x\right)=0\Rightarrow x=6\)

Số đó là \(625\)

TH4: \(b-1=5\Rightarrow b=6\) thế vào (1)

\(\Rightarrow10\left(10x+a-10a^2-12a\right)=30\)

\(\Rightarrow10x-10a^2-11a=3\)

\(\Rightarrow10\left(x-a^2-a\right)=a+3\)

\(\Rightarrow a+3⋮10\Rightarrow a=7\)

\(\Rightarrow10\left(x-7^2-7\right)=10\)

\(\Rightarrow x=57\)

Số đó là \(5776\)

Vậy có 2 số thỏa mãn yêu cầu là \(625\) và \(5776\)

26 tháng 5 2016
so do la 52 ban nhe
26 tháng 5 2016

Gọi số cần tìm là ab

Ta có:a+b=7

và a2+b2=230=>a và b=5

=>Có các cặp số 5 và 4;5 và 3;5 và 2;4 và 3(1)

2 x ab=ab=>20b+2a=10a+b=>19b=8a

Trong các cặp số nêu ở (1),chỉ có 2.19=38=8.5=40

=>a=5;b=2

Vậy số cần tìm là 52

24 tháng 8 2017

giải : gọi số cần tìm là ab (a khác 0; a,b<10)

ta có : ab+ba=10a+b+10b+aq=11a+11b=11(a+b)

vì a+b là số chính phương nên a+b chia hết cho 11

mà 1 lớn hơn hoặc bằng a <10

0 lớn hơn hoặc bằng b<10

= 1 lớn hơn hoặc bằng a+b<20

=a+b=11

ta có bảng sau :

 a

2

3

4

5

6

7

8

9

b

9

8

7

6

5

4

3

2

vậy có 8 số thỏa mãn đề bài 

24 tháng 8 2017

Cách 1: Tách số hạng thứ hai 

          x2 – 6x + 8  = x2 – 2x – 4x + 8

                            =  x(x – 2) – 4( x – 2)

         = (x –  )(x –  4).

Cách 2:  Tách số hạng thứ 3

          x - 6x + 8 = x2 – 6x + 9 – 1

                            = (x – 3)2 – 1  = ( x – 3 – 1)(x – 3 + 1)

                           = (x –  4)( x – 2).

Cách 3: x – 6x + 8  =  x2 – 4 – 6x + 12

                                     =  ( x – 2)(x + 2) – 6(x –  2)

                                       = (x –  2)(x –  4)

28 tháng 12 2015

Số tự nhiên có hai chữ số, mà biết nó bình phương của số đó là một số có bốn chữ số mà hai chữ số cuối cùng là chính là số đó. Số đó là: 76^2=5776

tick nha bạn