Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy phương trình có dạng \(a{x^2} + b{y^2} = 1\) nên phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) là phương trình của đường elip
Từ phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1\)
Từ phương trình chính tắc ta có: \(a = \frac{1}{2},b = \frac{1}{4} \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} - {{\left( {\frac{1}{4}} \right)}^2}} = \frac{{\sqrt 3 }}{4}\)
Suy ra tiêu điểm của elip này là \({F_1}\left( { - \frac{{\sqrt 3 }}{4};0} \right)\) và \({F_2}\left( {\frac{{\sqrt 3 }}{4};0} \right)\)
b) Ta thấy phương trình có dạng \(a{x^2} - b{y^2} = 1\) nên phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) là phương trình của đường hypebol
Từ phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{36}} = 1\)
Từ phương trình chính tắc ta có: \(a = 3,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{3^2} + {6^2}} = 3\sqrt 5 \)
Suy ra tiêu điểm của hypebol này là \({F_1}\left( { - 3\sqrt 5;0} \right)\) và \({F_2}\left( {3\sqrt 5;0} \right)\)
c) Phương trình \(({C_3}):x = \frac{1}{8}{y^2}\) có dạng \({y^2} = ax\) nên phương trình này là phương trình của parabol
Ta có phương trình chính tắc là \({y^2} = 8x\)
Từ phương trình chính tắc ta có: \(2p = 8 \Rightarrow p = 4\)
Suy ra tiêu điểm là \(F(2;0)\)
a) Phương trình \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 10,b = 6 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{{10}^2} - {6^2}} = 8 \)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 8;0} \right),{F_2}\left( {8;0} \right)\)
Tọa độ các đỉnh: \(A(0;6),B(10;0),C(0; - 6),D( - 10;0)\)
Độ dài trục lớn 20
Độ dài trục nhỏ 12
b) Phương trình \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 5,b = 4 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{5^2} - {4^2}} = 3\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 3;0} \right),{F_2}\left( {3;0} \right)\)
Tọa độ các đỉnh: \(A(0;4),B(5;0),C(0; - 4),D( - 5;0)\)
Độ dài trục lớn 10
Độ dài trục nhỏ 8
c) \({x^2} + 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)
Vậy ta có phương trình chính tắc của elip đã cho là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)
Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{4^2} - {1^2}} = \sqrt {15} \)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {15} ;0} \right),{F_2}\left( {\sqrt {15} ;0} \right)\)
Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)
Độ dài trục lớn 8
Độ dài trục nhỏ 2
Ta có: \(c = \sqrt {{{100}^2} - {{64}^2}} = 6\). Do đó (E) có hai tiêu điểm là \({F_1}\left( { - 6;0} \right),{F_2}\left( {6;0} \right)\) và có tiêu cự bằng 2c = 12.
Tiêu cự là \(2c\), độ dài trục lớn là \(2a\) \(\Rightarrow\dfrac{2c}{2a}=\dfrac{1}{2}\Rightarrow a=2c\) (1)
Phương trình elip có dạng:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{a^2-c^2}=1\) (2)
Thay (1) vào (2):
\(\Leftrightarrow\dfrac{x^2}{4c^2}+\dfrac{y^2}{3c^2}=1\) (3)
Do elip qua A, thay tọa độ A vào (3):
\(\Rightarrow\dfrac{6^2}{4c^2}+\dfrac{0}{3c^2}=1\Rightarrow c=3\) \(\Rightarrow a=2c=6\)
\(\Rightarrow b^2=a^2-c^2=27\)
Vậy pt elip là: \(\dfrac{x^2}{36}+\dfrac{y^2}{27}=1\)
Gọi phương trình chính tắc của elip là: x 2 a 2 + y 2 b 2 = 1
Vì elip đi qua điểm A 2 ; 3 do đó thay tọa độ điểm A vào ta được
4 a 2 + 3 b 2 = 1 (1)
Theo đề bài tỉ số của độ dài trục lớn và tiêu cực là
2 a 2 c = a c = 2 3 ⇔ a = 2 c 3 ⇔ 3 a 2 = 4 c 2
Mà c 2 = a 2 - b 2 ta có 3 a 2 = 4 a 2 - b 2 ⇔ a 2 - 4 b 2 = 0 (2)