Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(g\left(x\right)=x^3+x^2+x-4=x^2\left(x+1\right)+x+1-5\)
\(g\left(x\right)=\left(x+1\right)\left(x^2+1\right)-5\)
Vậy khi chia đa thức \(g\left(x\right)\) cho \(x+1\) có số dư là 5.
Mk nghĩ yêu cầu là tìm đa thức f(x) sai thì bn cmt nha
Gọi dư khi chia f(x) cho (x - 2)(x - 3) là ax + b
h(x), g(x) lần lượt là thương khi chia f(x) cho x - 2; x - 3
+ \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\)
+ Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=\left(x-2\right)\cdot h\left(x\right)+5\\f\left(x\right)=\left(x-3\right)\cdot g\left(x\right)+7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Do đó : \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\)
=>n^2-2n-3n+6+1 chia hết cho n-2
=>\(n-2\in\left\{1;-1\right\}\)
hay \(n\in\left\{3;1\right\}\)