K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

\(\overline{xy}.x=\overline{zzz}\)

\(\Rightarrow\overline{xy}.x=37.3.z\)

\(\overline{xy}.x⋮37\) nên \(\left[{}\begin{matrix}\overline{xy}⋮37\\x⋮37\end{matrix}\right.\). Nhưng x khác 0 nên \(x⋮̸37\), do đó \(\overline{xy}⋮37\)

\(\Rightarrow\left[{}\begin{matrix}\overline{xy}=37\\\overline{xy}=74\end{matrix}\right.\)

+ Nếu \(\overline{xy}=37\) thì x = 3 \(\Rightarrow\overline{zzz}=111\), chọn

+ Nếu \(\overline{xy}=74\) thì x = 7 \(\Rightarrow\overline{zzz}=518\), loại.

Vậy, x = 3, y = 7, z = 1

22 tháng 1 2022

\(\overline{xy}=10.x+y\) . Khi đó, \(\frac{\overline{xy}}{x+y}=\frac{10x+y}{x+y}\)

Mặt khác, \(\frac{10x+y}{x+y}=\frac{100x+10y}{10\left(x+y\right)}=\frac{19\left(x+y\right)+81-9y}{10\left(x+y\right)}=\frac{19}{10}+\frac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\frac{19}{10}\)

Do đó, \(\frac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất \(\frac{19}{10}\) khi \(9x-y=0\) , hay x = 1, y = 9.

Vậy số cần tìm là 19

22 tháng 1 2022

MÌNH KO HIÊU

20 tháng 8 2020

(x;y là số nguyên tố)

\(\left(x^2-y^2\right)=4xy+1\left(1\right)\)

Ta có \(\left(x^2-y^2\right)^2-1=4xy\Leftrightarrow\left(x^2-y^2+1\right)\left(x^2-y^2-1\right)=4xy\) (**)

Vì (1) là phương trình đối xứng và x,y là số nguyên nên đặt 

\(2\le x< y\Rightarrow\hept{\begin{cases}x+y\ge6\\x+y\ge5\end{cases}}\)và y là số lẻ (I) ta có:

(**) <=> (đến đây có 5 TH tìm được (x;y)=(2;5))

24 tháng 2 2018

Ta có : 

\(\overline{a,b}.\overline{ab,a}=\overline{ab,ab}\)

\(\Leftrightarrow\)\(\left(\overline{a,b}.10\right)\left(\overline{ab,a}.10\right)=\overline{ab,ab}.100\)

\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{abab}\)

\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{ab}.\left(100+1\right)\)

\(\Leftrightarrow\)\(\overline{aba}=101\)

\(\Rightarrow\)\(a=1\)\(;\)\(b=0\)

Vậy \(a=1\) và \(b=0\)

21 tháng 2 2018

a=1

b=0

22 tháng 1 2023

Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5, 

b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3

 

22 tháng 1 2023

Vì a,b,c khác nhau đôi một

NV
24 tháng 11 2018

Ta có \(A=\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2=\left(10a+b\right)^2-\left(10b+a\right)^2\)

\(A=\left(10a+b-10b-a\right)\left(10a+b+10b+a\right)=\left(9a-9b\right)\left(11a+11b\right)\)

\(A=9.11.\left(a-b\right)\left(a+b\right)\)

Do A là SCP và 9 là SCP \(\Rightarrow11\left(a-b\right)\left(a+b\right)\) là SCP

\(\Rightarrow\left(a-b\right)\left(a+b\right)=11k\) với k là SCP \(\Rightarrow\left(a-b\right)\left(a+b\right)\) là ước của 11

NV
24 tháng 11 2018

Lỡ tay bấm nút gửi, làm tiếp xuống vậy :D

Do \(\left\{{}\begin{matrix}0\le a-b\le9\\1\le a+b\le18\end{matrix}\right.\) và 11 là số nguyên tố

\(\Rightarrow a+b=11\)\(a-b\) là SCP

Ta có các cặp số sau:

\(\left\{{}\begin{matrix}a+b=11\\a-b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=11\\a-b=4\end{matrix}\right.\) \(\Rightarrow\) không có a, b tự nhiên thỏa mãn

\(\left\{{}\begin{matrix}a+b=11\\a-b=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10>9\\b=1\end{matrix}\right.\) (loại)

Vậy số cần tìm là 65

Theo đề, ta có: 100a+10b+c=11(a+b+c)

=>89a-b-10c=0

Do 10c+b<100 nên 89a<100 

=>a<=1

=>a=1

=>89a=10z+y

=>z=8; y=9

=>198