K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 6

Lời giải:

$4500=2^2.3^2.5^3$

$x< y< z$ nên $x=3$.

Khi đó: $5^3+2.5^y+5^z=4500$

$\Rightarrow 2.5^y+5^z=4375$

$5^y(2+5^{z-y})=4375=5^4.7$

Vì $2+5^{z-y}\not\vdots 5$ với mọi $y< z$ nên $5^y=5^4\Rightarrow y=4$

$\Rightarrow 2+5^{z-y}=7$

$5^{z-4}=5\Rightarrow z-4=1\Rightarrow z=5$

 

8 tháng 7 2017

Ta có : \(\left(5x+5y+5z\right)^2-\left(25xy+25yz+25zx\right)\)

\(=25\left(\left(x+y+z\right)^2-\left(xy+yz+zx\right)\right)\)

Xét : \(\left(x+y+z\right)^2-\left(xy+yz+zx\right)=0\)

\(=>x^2+y^2+z^2+2xy+2yz+2zx-xy-yz-zx=0\)

\(=>x^2+y^2+z^2+xy+yz+zx=0\)

Nhân biểu thức với 2 ta được:

\(2x^2+2y^2+2z^2+2xy+2yz+2zx=0\)

\(=>\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2=0\)

\(=>x+y=y+z=z+x=0\)

Vạy để phân thức A xác định thì x,y,z không đồng thời bằng 0;

CHÚC BẠN HỌC TỐT...

DD
4 tháng 7 2021

Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\).

Khi đó ta có: \(13=xyz+x^2+y^2+z^2\ge z^3+3z^2\)

suy ra \(z=1\)

\(12=xy+x^2+y^2\ge y^2+y^2+y^2=3y^2\)

\(\Rightarrow y=1\)hoặc \(y=2\).

Với \(y=1\)\(x^2+1+1+x=13\Leftrightarrow x^2+x-11=0\)không có nghiệm nguyên dương. 

Với \(y=2\)\(x^2+2^2+1^2+1.2.x=13\Leftrightarrow x^2+2x-8=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Rightarrow x=2\)thỏa mãn. 

Vậy phương trình có nghiệm là \(\left(1,2,2\right)\)và các hoán vị.