Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$
Coi đây là pt bậc 2 ẩn $x$ thì:
$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:
$x_1=\frac{1-3y+y-3}{2}=-y-1$
$x_2=\frac{1-3y+3-y}{2}=2-2y$
Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
\(6x^2+\left(2y-1\right)x+10y^2-28y+18=0\)
\(\Delta=\left(2y-1\right)^2-24\left(10y^2-28y+18\right)\ge0\)
\(\Leftrightarrow-236y^2+668y-431\ge0\)
\(\Rightarrow\dfrac{167-2\sqrt{615}}{118}\le y\le\dfrac{167+2\sqrt{615}}{118}\)
\(\Rightarrow y=1\)
Thế vào pt đầu ...
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)
\(2\left(x+y\right)+1=3xy\)
=>\(2x+2y-3xy=1\)
=>\(x\left(-3y+2\right)+2y=1\)
=>\(-x\left(3y-2\right)+2y-\dfrac{4}{3}=-\dfrac{1}{3}\)
=>\(-3x\left(y-\dfrac{2}{3}\right)+2\left(y-\dfrac{2}{3}\right)=-\dfrac{1}{3}\)
=>\(-3x\left(3y-2\right)+2\left(3y-2\right)=-1\)
=>\(\left(3y-2\right)\left(-3x+2\right)=-1\)
=>\(\left(3x-2\right)\left(3y-2\right)=1\)
=>\(\left(3x-2;3y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;1\right);\left(\dfrac{1}{3};\dfrac{1}{3}\right)\right\}\)
mà x,y nguyên
nên (x,y)=(1;1)
\(x^2+2y^2+3xy+8=9x+10y\)
\(\Leftrightarrow4x^2+8y^2+12xy+32-36x-40y=0\)
\(\Leftrightarrow4x^2+12x\left(y-3\right)+\left(8y^2-40y+32\right)=0\)
\(\Leftrightarrow4x^2+12x\left(y-3\right)+9\left(y-3\right)^2-\left(y^2-14y+49\right)=0\)
\(\Leftrightarrow\left[2x-3\left(y-3\right)\right]^2-\left(y-7\right)^2=0\)
\(\Leftrightarrow\left[2x-3\left(y-3\right)-\left(y-7\right)\right].\left[2x-3\left(y-3\right)+\left(y-7\right)\right]=0\)
\(\Leftrightarrow\left(2x-4y+16\right)\left(2x-2y+2\right)=0\)
\(\Leftrightarrow\left(x-2y+8\right)\left(x-y+1\right)=0\)
-TH1: \(x-2y+8=0\) \(\Leftrightarrow x=2y-8\) thay vào pt đề cho tìm được x, y.
Tương tự cho TH2