Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-xy-y^2-8=0\Leftrightarrow\left(x^2-xy\right)+\left(x^2-y^2\right)=8\)
\(\Leftrightarrow x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=8\)
\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=8\)
Ta có bảng sau:
x+y | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
2x+y | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | 7 | 2 | -2 | -7 | 7 | 2 | -2 | -7 |
y | -15 | -6 | 0 | 6 | -6 | 0 | 6 | 15 |
Bạn tự kết luận
Tìm xy biết xy+2x-5y=0( x, y thuộc Z)
\(\Rightarrow x(y+2)-5(y+2)=-10\)
\(\Rightarrow(x-5)(y+2)=-10\)
Vì \(x,y\in Z\Rightarrow x-5,y+2\in Z\)
Ta có bảng sau:
x-5 | 1 | -1 | -2 | -5 | 2 | 5 | 10 | -10 |
y+2 | -10 | 10 | 5 | 2 | -5 | -2 | -1 | 1 |
x | 6 | 4 | 3 | 0 | 7 | 10 | 15 | -5 |
y | -12 | 8 | 3 | 0 | -7 | -4 | -3 | -1 |
Chúc bạn học tốt!
1. x+y=xy
=> x-xy+y=0
=> x(1-y)+y=0
=> x(1-y)+y -1 =-1
=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1
* 1-y=-1 => y=2
x-1=1=> x=2
* 1-y =1 => y=0
x-1=-1 => x=0
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=-1\). rồi xét TH.
\(x^2-2y^2-xy+2x-y-2=0\)
\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)
Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).
Ta có bảng giá trị:
x+y+1 | -3 | -1 | 1 | 3 |
x-2y+1 | -1 | -3 | 3 | 1 |
x | -10/3 (l) | -8/3 (l) | 2/3 (l) | 4/3 (l) |
y |
Vậy phương trình đã cho không có nghiệm nguyên.
\(PT\Leftrightarrow2x^2-2xy+xy-y^2+8=0\)
\(\Leftrightarrow2x\left(x-y\right)+y\left(x-y\right)=-8\)
\(\Leftrightarrow\left(2x+y\right)\left(x-y\right)=-8\)
\(\Rightarrow\) \(2x+y;x-y\) thuộc ước của - 8 là \(\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Xét từng TH là ra nhá bn