Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 6x – 7y = 5 ⇔ x = 7 y + 5 6 ⇔ x = y + y + 5 6
Đặt y + 5 6 = t t ∈ ℤ ⇒ y = 6t – 5 = 6 ⇒ x = y + y + 5 6 = 6t – 5 + t = 7t – 5
Nên nghiệm nguyên của phương trình là x = 7 t − 5 y = 6 t − 5 t ∈ ℤ
Vì x, y nguyên dương nên x > 0 y > 0 ⇒ 7 t − 5 > 0 6 t − 5 > 0 ⇒ t > 5 7 t > 5 6 ⇒ t > 5 7
mà t ∈ ℤ ⇒ t ≥ 1
Do đó nghiệm nguyên dương nhỏ nhất của phương trình có được khi t = 1
⇒ x = 7.1 − 5 y = 6.1 − 5 ⇒ x = 2 y = 1 ⇒ x − y = 1
Đáp án: C
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)
Bình phương 2 vế, ta có:
\(x+y+3+1=x+y\)
\(x+y+3+1-x-y=0\)
\(4=0\) (vô lý)
Vậy phương trình vô nghiệm
-Chúc bạn học tốt-
- Với \(x=1\Rightarrow y=1\)
- Với \(x>1\Rightarrow y>1\)
\(\Rightarrow3^x=2^y+1\)
Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)
Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm)
\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)
\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)
\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)
\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)
\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)
\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)
\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)
\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)
Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)
\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)
Ta có: \(7\left(x^2+xy+y^2\right)=39\left(x+y\right)\) nên \(x^2+xy+y^2⋮39\) \(x+y⋮7\)
Đặt \(x^2+xy+y^2=39k;x+y=7k\) \(\left(k\in N\right)\) vì \(x^2+xy+y^2\ge0\)
\(\Rightarrow xy=\left(x+y\right)^2-\left(x^2+xy+y^2\right)=49k^2-39k\)
Theo Viet x,y là nghiệm của phương trình \(a^2-49k^2a+49k^2-39k=0\)
Phương trình có 2 nghiệm khi \(\Delta=49k^2-4.49k^2+4.39k=156k-147k^2=k\left(156-147k\right)\ge0\)
Vì k>0 nên \(156>147k\), vì k nguyên nên k=1
Do đó ta có x + y = 7,xy=10 nên áp dụng viet, ta giải được (x,y)=(2;5);(5;2)
Đó là giá trị nguyên cần tìm
Ta có:
\(x^3+7y=y^3+7x\)
\(\Leftrightarrow x^3-y^3-7x+7y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-7=0\end{cases}}\)
+) \(x-y=0\)\(\Rightarrow x=y=k\left(k\inℕ^∗\right)\)
+) \(x^2+xy+y^2-7=0\)
xét: \(\Delta=y^2-4\left(y^2-7\right)=-3y^2+28\ge0\)
\(\Rightarrow3y^2\le28\Rightarrow y^2\le9\Rightarrow y\in[1;2;3]\)
Xét từng trường hợp