Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
Với i = 1 thì
\(1+x_1\ge1+x_1\) (đúng)
Giả sử bất đẳng thức đúng đến i = k thì ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)
Đặt \(1+x_1+x_2+...+x_k=y\)
\(\Rightarrow x_1+x_2+...+x_k=y-1\)
\(\Rightarrow y-1\)cùng dấu với xn
Ta chứng minh bất đẳng thức đúng với \(i=k+1\)
Ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)
Ta chứng minh
\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)
\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)
\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)
Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu
\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1
Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)
Chắc bạn đánh nhầm đề. Đây là bài 7 trong báo TTT tháng trước. (Nếu mình sửa sai thì mình xin lỗi nhé).
Sửa đề: Cho \(n\in\mathbb{N},n\geq 2\) và \(x_i\in[1;\sqrt{2}] \forall i\in\overline{1,n}\).
Chứng minh: \(\dfrac{\sqrt{x_1^2-1}}{x_2}+\dfrac{\sqrt{x_2^2-1}}{x_3}+...+\dfrac{\sqrt{x_n^2-1}}{x_1}\le\dfrac{n\sqrt{2}}{2}\).
Giải:
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{\sqrt{x_1^2-1}}{x_2}=\dfrac{1}{2\sqrt{2}}.2.\sqrt{x_1^2-1}.\dfrac{\sqrt{2}}{x_2}\le\dfrac{1}{2\sqrt{2}}.\left(x_1^2-1+\dfrac{2}{x_2^2}\right)\).
Chứng minh tương tự...
Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\).
Mặt khác với mọi \(i\in\overline{1,n}\) ta có:
\(x_i^2+\dfrac{2}{x_i^2}-3=\dfrac{\left(x_i^2-1\right)\left(x_i^2-2\right)}{x_i^2}\le0\).
Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\le\dfrac{1}{2\sqrt{2}}\left(3n-n\right)=\dfrac{n\sqrt{2}}{2}=VP\left(đpcm\right)\).
Để (1) có 2 nghiệm dương \(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(m+3\right)^2-m-1\ge0\\x_1+x_2=2\left(m+3\right)>0\\x_1x_2=m+1>0\end{matrix}\right.\) \(\Rightarrow m>-1\)
\(P=\left|\dfrac{\sqrt{x_1}-\sqrt{x_2}}{\sqrt{x_1x_2}}\right|>0\Rightarrow P^2=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)^2}{x_1x_2}\)
\(P^2=\dfrac{x_1+x_2-2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{2\left(m+3\right)-2\sqrt{m+1}}{m+1}=\dfrac{4}{m+1}-\dfrac{2}{\sqrt{m+1}}+2\)
\(P^2=\left(\dfrac{2}{\sqrt{m+1}}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\Rightarrow P\ge\dfrac{\sqrt{7}}{2}\)
Dấu "=" xảy ra khi \(\sqrt{m+1}=4\Rightarrow m=15\)
AM-GM thôi :))
từ giả thiết :\(\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_{n-1}}=\frac{x_n}{1+x_n}\)
Áp dụng BĐT AM-GM: \(\frac{x_n}{1+x_n}\ge\left(n-1\right)\sqrt[n-1]{\frac{1}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_{n-1}\right)}}\)
từ giả thiết ta cũng có: \(\frac{x_{n-1}}{1+x_{n-1}}=\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_{n-2}}+\frac{1}{1+x_n}\ge\left(n-1\right)\sqrt[n-1]{\frac{1}{\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_{n-2}\right)\left(1+x_n\right)}}\)
cứ như thế,chuyễn 1 hạng tử từ vế trái sang vế phải, ta được n bất đẳng thức
Nhân chúng lại với nhau: \(\frac{x_1.x_2...x_n}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_n\right)}\ge\frac{\left(n-1\right)^n}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_n\right)}\)
do đó \(x_1.x_2.x_3...x_n\ge\left(n-1\right)^n\)
P/s: Nếu thắc mắc vì sao nó hết căn,để ý rằng nhân tử \(x_n\)xuất hiện (n-1) lần , nó chỉ không xuất hiện ở BĐT thứ 2 ở trên . căn (n-1) ắt sẽ hết
\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)
\(\left|x_1-x_2\right|=x_1+x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
a. thay m=-4 vào (1) ta có:
\(x^2-5x-6=0\)
Δ=b\(^2\)-4ac= (-5)\(^2\) - 4.1.(-6)= 25 + 24= 49 > 0
\(\sqrt{\Delta}=\sqrt{49}=7\)
x\(_1\)=\(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+7}{2}\)=6
x\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-7}{2}\)=-1
vậy khi x=-4 thì pt đã cho có 2 nghiệm x\(_1\)=6; x\(_2\)=-1
Vì \(x_1,x_2,x_3,....,x_n>0\)nên ta áp dụng bất đẳng thức Cosi, được :
\(1+x_1\ge2\sqrt{x_1}\)(1)
\(1+x_2\ge2\sqrt{x_2}\)(2)
.............................
\(1+x_n\ge2\sqrt{x_n}\)(n)
Nhân n bất đẳng thức trên theo vế, được :
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_n\right)\ge2^n.\sqrt{x_1.x_2...x_n}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow x_1=x_2=x_3=...=x_n=1\)(thoả mãn điều kiện)
Vậy nghiệm nguyên dương của phương trình : \(x_1=x_2=...=x_n=1\)