K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Dễ thấy 555 và 3x đều chia hết cho 3 nên 2y chia hết cho 3.Mà (555;2) = 1 nên y chia hết cho 3.

Đặt y = 3k (\(k\inℕ^∗\)) suy ra \(3x+6k=555\Leftrightarrow x+2k=185\Rightarrow x=185-2k\)

Do x nguyên dương nên \(185-2k\ge1\Leftrightarrow2k\le184\Leftrightarrow k\le92\)

Kết hợp \(k\inℕ^∗\) suy ra \(1\le k\le92\)

Từ đây suy ra \(\hept{\begin{cases}x=185-2k\\y=3k\end{cases}}\left(1\le k\le92;k\inℕ^∗\right)\)

NV
8 tháng 2 2022

Em tham khảo ở đây:

Tìm nghiệm nguyên dương của phương trình sau: \(3^x-2^y=1\)   - Hoc24

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)

do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)

xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)

từ đó ta có bẳng sau

x+y+11264
x-y-1123
x13/2(loại)4(TM)7/2(loại)
y9/2(loại)1(TM)-1/2(loại)

vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1

1 tháng 3 2022

Có:x^2=y^2+2y+13

=>x^2=(y^2+2y+1)+12

=>x^2=(y+1)^2+12

=>x^2-(y+1)^2=12

=>(x-y-1)(x+y+1)=12

vì x, y là các số nguyên dương

=>x-y-1<x+y+1

Xét các trường hợp

TH1:x-y-1=1 và x+y+1=12

=> x-y=2 và x+y=11

=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)

TH2: x-y-1=2 và x+y+1=6

=>x-y=3 và x+y=5

=>x=4 và y=3 (Thỏa mãn)

TH3:x-y-1=3 và x+y+1=4

=>x-y=4 và x+y=3(Loại vì x-y<x+y)

Vậy x=4, y=3

27 tháng 3 2021

\(x^2+x+xy-2y^2-y=5\)

\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)

\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)

\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)

Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)

Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)

Do đó \(\left(x-y\right)\inℤ^+\)

Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))

\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))

Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)

27 tháng 3 2021

Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.

31 tháng 12 2017

\(xy-2y-3x=1\)

\(\Leftrightarrow y\left(x-2\right)-3x=1\)

\(\Leftrightarrow y\left(x-2\right)-3x+6=7\)

\(\Leftrightarrow y\left(x-2\right)-3\left(x-2\right)=7\)

\(\Leftrightarrow\left(y-3\right)\left(x-2\right)=7\)

Đến đây dễ rồi bạn tự làm tiếp nhé

9 tháng 4 2018

Thiên bình có 102 thứ (1) lớp 8 chưa biết delta     

<=> \(\left(x^2+2\right)y=x^2+3x-5\\ \) 

\(\Leftrightarrow y=\frac{x^2+3x-5}{x^2+2}=1+\frac{3x-7}{x^2+2}\)

\(y\in Z\Leftrightarrow\frac{3x-7}{x^2+2}\in Z\) \(\Leftrightarrow\left|3x-7\right|\ge x^2+2\)=> \(-4\le x\le1\)

vô nghiệm

 <>x^2(x-y)+2(x-y)+x-5=0(1*) 
Denta theox 
1-4(x-y)[2(x-y)-5]>=0 
<>-8(x-y)^2+20(x-y)+1>=0 
<>[-10+V(108)]/-8=<(x-y)=< 
[10+V(108)]/8 
Vì x-y nguyên nên => 
0=<(x-y)=<2 
Vậy để ptr có no nguyên 
điều kiện cần là 
x-y=0 or x-y=1,x-y=2 
Đk đủ:bạn thay lần lượt 
các giá trị của x-y ở trên vào 1* 
nếu tìm đc x nguyên thì kết luận! 
Chúc bạn học tốt 
(V(108) là cb2 của 108)

NM
26 tháng 1 2021

ta có phương trình tương đương 

\(3mx-m-3x=2\Leftrightarrow3\left(m-1\right)x=m+2\)

phương trình có nghiệm duy nhất khi và chỉ khi \(m-1\ne0\Leftrightarrow m\ne1\)

khi đó PT có nghiệm \(x=\frac{m+2}{3\left(m-1\right)}>0\Rightarrow m\in\left(-\infty;-2\right)\cup\left(1;+\infty\right)\)

8 tháng 2 2019

PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1) 

(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)

\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)

Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)

Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.

Vậy phương trình trên không có nghiệm nguyên.