K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

ko hiểu

16 tháng 10 2019

\(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{5}=60\end{cases}}\)

<=> \(\hept{\begin{cases}x+y+z=100\\25x+15y+z=300\end{cases}}\)

Trừu vế dưới vơi vế trên:

\(24x+14y=200\)

<=> \(12x+7y=100\)

Có : \(12x⋮4,100⋮4\Rightarrow7y⋮4\Rightarrow y⋮4\)

Đặt: y = 4k, k nguyên dương

Có: \(12x+28k=100\)

<=> \(3x+7k=25\)Vì x, k nguyên dương 

Chọn k = 1 => x = 6 TM. Vậy y = 4, x =6, z =90

Chọn k = 2 => x =11/3 loại

Chọn k= 3 =>  x =4/3 loại

Chọn  \(k\ge4\)=> \(25=3x+28>28\) vô lí.

Vậy x = 6; y= 4, z = 90.

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
NV
13 tháng 11 2018

\(\left\{{}\begin{matrix}x+y+z=100\\15x+9y+z=300\end{matrix}\right.\) \(\Rightarrow14x+8y=200\Rightarrow x=\dfrac{100-4y}{7}\)

Do x, y, z nguyên dương \(\Rightarrow100-4y\) là bội của 7, mà \(100-4y< 100\) và luôn chia hết cho 4 với mọi y nguyên dương \(\Rightarrow100-4y\) là các bội chung nhỏ hơn 100 của 4 và 7 \(=\left\{28;56;84\right\}\)

\(100-4y=28\Rightarrow y=18\Rightarrow x=4\Rightarrow z=78\)

\(100-4y=56\Rightarrow y=11\Rightarrow x=8\Rightarrow z=81\)

\(100-4y=84\Rightarrow y=4\Rightarrow x=12\Rightarrow z=84\)

Vậy phương trình có 3 bộ nghiệm x, y, z thỏa mãn:

\(\left(x;y;z\right)=\left(4;18;78\right)\) ;\(\left(8;11;81\right)\) ;\(\left(12;4;84\right)\)

11 tháng 7 2017

câu a)

nhân cả 3 phương trình

ta được

\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)

Vế trái là 1 số chính phương nên Vp cũng là số chính phương

6 không phải là số chính phương nên

\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6

lập bảng 

đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa

câu b)

từ hpt =>5y+3=11z+7

<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R

y  nguyên dương nên (11z+4)thuộc bội(5) và z_min

=> z=1 

=> y=3

=> x =18 (t/m)

câu c)

qua pt (1) =>x=20-2y-3z

thay vao 2) <=> y+5z=23

y;z là nguyên dương mà 5z chia hêt cho 5 

=> z={1;2;3;4}

=> y={18;13;8;3}

=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé

chọn x=2; y=3; z=4 (t/m)

Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com

11 tháng 7 2017

Bạn giải nốt giùm mình câu a được ko?

13 tháng 1 2020

\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)

Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)

<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)

Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương

ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)

Có: \(S^2-3P=S\)

=> \(S+3P\ge4P\)<=> \(S\ge P\)

=> \(S^2-S=3P\le3S\)

<=> \(0\le S\le4\)

+) S = 0 loại

+) S = 1 => P = 0 loại 

+) S = 2 => P =3/2 loại 

+) S = 3 => P = 2

=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2 

=>  (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn

 hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn

+) S = 4 => P = 4 

=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)

=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.

Vậy: có 3 nghiệm là:....