Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)
\(y^2=-2\left(x^6-x^3y-32\right)\Leftrightarrow2x^6-2x^3y+y^2=64\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
# Chứng minh và áp dụng bất đẳng thức sau \(A^2+B^2\ge\frac{\left(A+B\right)^2}{2}\), ta có :
\(\left(2x^3-y\right)^2+y^2\ge\frac{\left(2x^3-y+y\right)^2}{2}=2x^6\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\Leftrightarrow-2\le x^2\le2\)
Mà x nguyên ( gt ) nên x có các giá trị sau : \(-2;-1;0;1;2\)
Nên các giá trị của x vào phương trình và giải tìm y ( lưu ý xét điều kiện nguyên của y )
x2 - 12y2 + xy - x + 3y + 5 = 0
<=> (x2 - 9y2) + (- 3y2 + xy) + (3y - x) = - 5
<=> (x - 3y)(x + 3y) + y(x - 3y) - (x - 3y) = - 5
<=> (x - 3y)(x + 3y + y - 1) = - 5
<=> (x - 3y)(x + 4y - 1) = - 5
<=> (x - 3y, x + 4y - 1) = (- 1, 5; 5, - 1; 1, - 5; - 5, 1)
Giải ra tìm được (x, y) = (2, 1; - 2, 1)
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
Bài toán :
Lời giải:
Tập xác định của phương trình
Rút gọn thừa số chung
Giải phương trình
Nghiệm được xác định dưới dạng hàm ẩn
#
\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)
=> phương trình ước số
<=> x2+4x+4=41-3y2
<=> (x+2)2=41-3y2
Vì x-2 >= 0 nên 41-3y2 cũng phải >= 0
y=0;+-1;+-2;+-3 (+- xin hiểu là cộng trừ )
Tìm x tương ứng với y...
\(x^2+4x-37+3y^2=0.\)
\(xy\left(2+4-3\right)=37\)
\(xy3=37\)
\(xy=\frac{37}{3}\)
tâm như là thế