K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Ta có:

\(y^3=\left(x-2\right)^4-x^4\)

\(\Leftrightarrow y^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)

\(\Rightarrow\)y là số chẵn

Đặt \(y=-2k\left(k\in Z\right)\)

\(\Rightarrow-8k^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)

\(\Leftrightarrow k^3=\left(x-1\right)\left(x^2-2x+2\right)\)

Đễ dàng chứng minh được \(\left(x-1\right);\left(x^2-2x+2\right)\) nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}x-1=m^3\\x^2-2x+2=n^3\end{cases}}\)

\(\Rightarrow n^3=m^6+1\)

Ta lại có: \(m^6< m^6+1\le\left(m^2+1\right)^3\)

\(\Rightarrow m^6+1=\left(m^2+1\right)^3\)

\(\Leftrightarrow m^2\left(m^2+1\right)=0\)

\(\Leftrightarrow m=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

23 tháng 11 2016

Có: \(z^2\ge0\forall z\Rightarrow z^2+4\ge4\forall z\Rightarrow\sqrt{z^2+4}\ge\sqrt{4}=2\forall z\)

\(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)

\(\Rightarrow\sqrt{z^2+4}=2\)\(\Rightarrow z^2+4=4\Rightarrow z^2=0\Rightarrow z=0\)

Lúc này ta có: x2016 + |y - 2015| = 0

\(x^{2016}\ge0;\left|y-2015\right|\ge0\forall x;y\)

nên \(\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y-2015=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=2015\end{cases}\)

Vậy phương trình trên có nghiệm x = 0; y = 2015; z = 0

23 tháng 11 2016

Nghiệm nguyên nha

25 tháng 2 2019

Đề lỗi rồi kìa ba: \(+^2+\) là sao?

28 tháng 2 2019

Khó ghê,giải giúp anh với :v

28 tháng 12 2018

 1: Tìm x, y nguyên tố thoả mãn

                         y2 – 2x2 = 1

Hướng dẫn:

Ta có y2 – 2x2 = 1 ⇒ y2   = 2x2 +1 ⇒ y là số lẻ

Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1

⇔ x2 = 2 k2 + 2k ⇒ x chẵn , mà x nguyên tố ⇒ x = 2, y = 3

28 tháng 12 2018

2: Tìm nghiệm nguyên dương của phương trình

                             (2x + 5y + 1)(2|x|   + y + x + x) = 105

 Hướng dẫn:

Ta có: (2x + 5y + 1)(2|x|  + y + x + x) = 105

Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn

2|x| + y + x + x = 2|x| + y + x(x+ 1) lẻ

có x(x+ 1) chẵn, y chẵn ⇒ 2|x|  lẻ ⇒ 2|x| = 1 ⇒ x = 0

Thay x = 0 vào  phương trình ta được

(5y + 1) ( y + 1) = 105 ⇔ 5y2 + 6y – 104 = 0

⇒ y = 4 hoặc y = \displaystyle -\frac{26}{5} ( loại)

Thử lại ta có x = 0; y = 4 là nghiệm của phương trình

25 tháng 5 2022

\(\dfrac{5}{x}-\dfrac{y}{4}=\dfrac{1}{12}\Leftrightarrow\dfrac{20-xy}{4x}=\dfrac{1}{12}\Leftrightarrow240-12xy=4x\Leftrightarrow240-12xy-4x=0\Leftrightarrow60-3xy-x=0\Leftrightarrow-3xy-x=-60\Leftrightarrow-x\left(3y+1\right)=60\)Đến đây do x,y nguyên nên bạn lập bảng xét ước nhá, lưu ý 3y + 1 chia 3 dư 1 để bớt trường hợp xét nhá.