Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+xy+y^2=2x+y\)
đk có nghiệm của Pt:
\(x^2+x\left(y-2\right)+y^2-y=0\left(1\right)\)
để tồn tại x thì Pt 1 phải có nghiệm
\(\left(y-2\right)^2-4\left(y^2-y\right)\)
\(-3y^2+4\left(vl\right)\)
Vậy Pt kia k có nghiệm nguyên.
đúng là thanh niên trong đội tuyển toán yêu dấu của cô chủ nhiệm
Câu 1: Cặp số là nghiệm phương của 2x + 3y = 7 là:
C. ( 2;1 )
Câu 2: Phương trình x + 2y = 3, Cặp số là nghiệm phương của phương trình đã cho là cặp số : ( 1;1)
1.
$3xy+x-y=1$
$\Rightarrow x(3y+1)-y=1$
$\Rightarrow 3x(3y+1)-3y=3$
$\Rightarrow 3x(3y+1)-(3y+1)=2$
$\Rightarrow (3y+1)(3x-1)=2$
Do $x,y$ là số nguyên nên $3x-1, 3y+1$ là số nguyên. Mà tích của chúng bằng 2 nên ta có các TH sau:
TH1: $3x-1=1, 3y+1=2\Rightarrow x=\frac{2}{3}$ (loại)
TH2: $3x-1=-1, 3y+1=-2\Rightarrow x=0; y=-1$
TH3: $3x-1=2, 3y+1=1\Rightarrow x=1; y=0$
TH4: $3x-1=-2, 3y+1=-1\Rightarrow x=\frac{-1}{3}$ (loại)
2.
$2x^2+3xy-2y^2=7$
$\Rightarrow (x+2y)(2x-y)=7$
Ta xét các TH sau:
TH1: $x+2y=1, 2x-y=7$
$\Rightarrow 2(x+2y)-(2x-y)=2-7=-5$
$\Leftrightarrow 5y=-5\Leftrightarrow y=-1$.
$x=1-2y=1-2(-1)=1+2=3$
TH2: $x+2y=-1, 2x-y=-7$
$\Rightarrow x=-3; y=1$
TH3: $x+2y=7, 2x-y=1$
$\Rightarrow x=\frac{9}{5}$ (loại)
TH4: $x+2y=-7, 2x-y=-1$
$\Rightarrow x=\frac{-9}{5}$ (loại)
Vậy.............
a) \(\left(x-1\right)\left(y+2\right)=7\)
\(\Leftrightarrow\left(x-1\right)\left(y+2\right)=1.7=7.1=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(y+2\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(x\) | \(2\) | \(8\) | \(0\) | \(-6\) |
\(y\) | \(5\) | \(-1\) | \(-9\) | \(-3\) |
Vậy \(\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\left\{{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
b) \(\left(x-2\right)\left(2y+1\right)=17\)
\(\Rightarrow\left(x-2\right)\left(2y+1\right)=1.17=17.1=\left(-1\right).\left(-17\right)=\left(-17\right).\left(-1\right)\)
Ta có bảng sau:
\(x-2\) | \(1\) | \(17\) | \(-1\) | \(-17\) |
\(2y+1\) | \(17\) | \(1\) | \(-17\) | \(-1\) |
\(x\) | \(3\) | \(19\) | \(1\) | \(-15\) |
\(y\) | \(8\) | \(0\) | \(-9\) | \(-1\) |
Vậy \(\left\{{}\begin{matrix}x=3\\y=8\end{matrix}\right.\left\{{}\begin{matrix}x=19\\y=0\end{matrix}\right.\left\{{}\begin{matrix}x=1\\y=-9\end{matrix}\right.\left\{{}\begin{matrix}x=-15\\y=-1\end{matrix}\right.\)