K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 9 2021

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 3\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 3\)

\(\Rightarrow\left(2x-1\right)^2< 3\) (1)

\(\Rightarrow\left(2x-1\right)^2=\left\{0;1\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow2y^2-2y< 1\Rightarrow\left(2y-1\right)^2< 3\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\) (giải như (1))

- Với \(x=1\Rightarrow2y^2+5< 4y+5\Rightarrow y^2-2y< 0\)

\(\Rightarrow y\left(y-2\right)< 0\Rightarrow0< y< 2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(1;1\right)\)

23 tháng 11 2017

giúp mình với

26 tháng 9 2020

XIN LỖI ! MÌNH KHONG BIẾT

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

10 tháng 4 2019

hình như sai đề bạn. chỉ có x hoặc y thôi chứ

10 tháng 4 2019

Đề thi huyện đó bạn.

23 tháng 4 2018

Ta có: 2xy - 4x + y - 9 = 0

=> 2x ( y - 2 ) + ( y - 2 ) - 7 = 0

=> ( 2x + 1 )( y - 2 ) = 7

=>

2x+117-1-7
y - 271-7-1

=> 

x140-3
y93-51
23 tháng 4 2018

2xy-4x+y-9=0

\(\Leftrightarrow\)2x(y-2)+ ( y-2)-7=0

\(\Leftrightarrow\)(2x+1)(y-2)=7

\(\Rightarrow\)2x+1 và y-2 là ước của 7

Vì x,y\(\in\)Z\(\Rightarrow\)2x +1 ; y-2 \(\in\)Z\(\Rightarrow\)2x +1;y-2 \(\in\)ước 7

Ta có bảng sau:

2x+11-17-7
y-27-71-1
x0-13-4
y9-531
27 tháng 9 2021

\(-5x^2-2xy-2y^2+14x+10y-1\\ =-\left(x^2+2xy+y^2\right)-\left(4x^2-2\cdot2\cdot\dfrac{7}{2}x+\dfrac{49}{4}\right)-\left(y^2-10y+25\right)+\dfrac{55}{4}\\ =-\left(x+y\right)^2-\left(2x-\dfrac{7}{2}\right)^2-\left(y-5\right)^2+\dfrac{55}{4}\le\dfrac{55}{4}\\ Max\Leftrightarrow\left\{{}\begin{matrix}x=-y\\2x=\dfrac{7}{2}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=\dfrac{7}{4}\\y=5\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

a: Ta có: \(-x^2+3x\)

\(=-\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

8 tháng 2 2019

PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1) 

(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)

\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)

Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)

Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.

Vậy phương trình trên không có nghiệm nguyên.