K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

a)\(f\left(x\right)=\left(3x+4\right)\cdot\left(5x-1\right)+\left(5x+2\right)\cdot\left(1-3x\right)+2\)

\(=15x^2-3x+20x-4+5x-15x^2+2-6x+2\)

\(=16x\)

b)\(g\left(x\right)=\left(5x-1\right)\cdot\left(2x+3\right)-3\cdot\left(3x-1\right)\)

\(=10x^2+15x-2x-3-9x+3\)

\(=10x^2+4x\)

12 tháng 7 2017

a, Ta có:

\(f\left(x\right)=0\)

\(\Rightarrow\left(3x+4\right)\left(5x-1\right)+\left(5x+2\right)\left(1-3x\right)+2=0\)

\(\Rightarrow15x^2-3x+20x-4+5x-15x^2+2-6x+2=0\)

\(\Rightarrow16x=0-2+4\Rightarrow16x=2\Rightarrow x=\dfrac{1}{8}\)

Vậy nghiệm của đa thức f(x) là \(x=\dfrac{1}{8}\).

b,Ta có:

\(g\left(x\right)=0\)

\(\Rightarrow\left(5x-1\right)\left(2x+3\right)-3\left(3x-1\right)=0\)

\(\Rightarrow10x^2+15x-2x-3-9x+3=0\)

\(\Rightarrow10x^2+4x=0\)

\(\Rightarrow2x.\left(5x+2\right)=0\Rightarrow x.\left(5x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\5x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{5}\end{matrix}\right.\)

Vậy.................

Chúc bạn học tốt!!!

a: f(x)=0

\(\Leftrightarrow15x^2-3x+20x-4+5x-15x^2+2-6x+2=0\)

\(\Leftrightarrow16x=0\)

hay x=0

b: g(x)=0

\(\Leftrightarrow10x^2+15x-2x-3-9x+3=0\)

\(\Rightarrow10x^2+4x=0\)

=>2x(5x+2)=0

=>x=0 hoặc x=-2/5

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

a: 3x-5>15-x

=>4x>20

hay x>5

b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)

=>3x2+x>3x2-12

=>x>-12

a: x^3-7x-6

=x^3-x-6x-6

=x(x-1)(x+1)-6(x+1)

=(x+1)(x^2-x-6)

=(x-3)(x+2)(x+1)

b: =2x^3+x^2-2x^2-x+6x+3

=x^2(2x+1)-x(2x+1)+3(2x+1)

=(2x+1)(x^2-x+3)

c: =2x^3-3x^2-2x^2+3x+2x-3

=x^2(2x-3)-x(2x-3)+(2x-3)

=(2x-3)(x^2-x+1)

d: =2x^3+x^2+2x^2+x+2x+1

=(2x+1)(x^2+x+1)

e: =3x^3+x^2-3x^2-x+6x+2

=(3x+1)(x^2-x+2)

f: =27x^3-9x^2-18x^2+6x+12x-4

=(3x-1)(9x^2-6x+4)

29 tháng 8 2023

a) \(x^3-7x-6\)

\(=x^3-x-6x-6\)

\(=\left(x^3-x\right)-\left(6x+6\right)\)

\(=x\left(x^2-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

b) \(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(x^2-x+3\right)\left(2x+1\right)\)

c) \(2x^3-5x^2+5x+1\)

\(=2x^3-3x^2-2x^2+3x+2x-3\)

\(=\left(2x^3-3x^2\right)-\left(2x^2-3x\right)+\left(2x-3\right)\)

\(=x^2\left(2x-3\right)-x\left(2x-3\right)+\left(2x-3\right)\)

\(=\left(x^2-x+1\right)\left(2x-3\right)\)

d) \(2x^3+3x^2+3x+1\)

\(=2x^3+x^2+2x^2+x+2x+1\)

\(=\left(2x^3+x^2\right)+\left(2x^2+x\right)+\left(2x+1\right)\)

\(=x^2\left(2x+1\right)+x\left(2x+1\right)+\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2+x+1\right)\)

e) \(3x^3-2x^2+5x+2\)

\(=3x^3+x^2-3x^2-x+6x+2\)

\(=\left(3x^3+x^2\right)-\left(3x^2+x\right)+\left(6x+2\right)\)

\(=x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)\)

\(=\left(3x-1\right)\left(x^2-x+2\right)\)

f) \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(27x^3-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)