Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A(x)=(2x-4)(x+1)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy đa thức \(A(x)\)có hai nghiệm đó là 2 và -1
\(B(x)=(-5x+2)(x-7)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-5x+2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}-5x=-2\\x=7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\x=7\end{cases}}\)
Vậy đa thức \(B(x)\)có hai nghiệm đó là 2/5 và 7
\(C(x)=(4x-3)(2x+3)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{2}\end{cases}}\)
Vậy đa thức \(C(x)\)có hai nghiệm đó là 3/4 và -3/2
Biết đa thức f(x)=ax3+bx2+cx+d(với a khác 0) có 2 nghiệm 1 và-1. Tìm nghiệm thứ ba của đa thức f(x)?
Theo đề:
f(1)=a+b+c+d=0
f(-1)=-a+b-c+d=0
=>f(1)+f(-1)=2(b+d)=0 => b+d = 0 => b=-d (1)
f(1)-f(-1)=2(a+c)=0 => a+c=0 => a=-c(2)
Thay (1),(2) vào pt:
f(x)= -cx^3-dx^2+cx+d = cx(1 - x^2) + d(1 - x^2) = (cx + d)(1 - x)(1 + x) =0
=> x=1,x=-1, x= -d/c
Vậy nghiệm thứ 3 của f(x) là x= -d/c
f(x) = x2 - 4 + 4
f(x) = 0 <=> x2 - 4 + 4 = 0
x2 - 4 = -4
=> x2 = 0
=> x = 0
=> đa thức này có 1 nghiệm duy nhất là 0
ko chắc đâu
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
\(3x^2+1x=0\)
\(\Rightarrow\)\(3x^2+1x=0\)
\(\Rightarrow\)\(x\left(3x+1\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}}\)
Vậy \(x=0\)và \(x=\frac{-1}{3}\)là nghiệm của đa thức \(3x^2+1x\)
3x2+x=0
\(\Rightarrow\)x(3x+1)=0
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\3x=-1\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
kết luận
a,\(M(x)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=(2x^4-x^4)+(6x^3-2x^3-4x^3)+(-x^2+3x^2)+1\)
\(=x^4+2x^2+1\)
b.\(M(x)+N(x)=(x^4+2x^2+1)+(-5x^4+x^3+3x^2-3)\)
\(=(x^4-5x^4)+x^3+(2x^2+3x^2)+(1-3)\)
\(=-4x^4+x^3+5x^2-2\)
\(M(x)-N(x)=(x^4+2x^2+1)-(-5x^4+x^3+3x^2-3)\)
\(=(x^4+5x^4)-x^3+(2x^2-3x^2)+(1+3)\)
\(=6x^4-x^3-x^2+4\)
c.Ta có
\(M(x)=x^4+2x^2+1=0\)
\(\Rightarrow x^4+2x^2=-1\)
mà \(x^4\ge0;2x^2\ge0\)
Vậy đa thức \(M(x)\)ko có nghiệm
Chúc bạn học tốt
\(x^2-4x+4=0\)
\(\Rightarrow x\left(x-4\right)=-4=2.\left(-2\right)\)
\(\Rightarrow x=2\)
Vậy x=2 là nghiệm đa thức.