K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

\(A\left(x\right)=\left(x-2x^2\right)\left(15x^2+7\right)\)

\(A\left(x\right)=0\)\(\Leftrightarrow\left(x-2x^2\right)\left(15x^2+7\right)=0\)

\(\Leftrightarrow x-2x^2=0\Leftrightarrow x\left(1-2x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-2x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

Hoặc \(\Leftrightarrow15x^2+7=0\Leftrightarrow15x^2=-7\Leftrightarrow x^2=\frac{-7}{15}\)(vô lí) 

Vậy \(x=0,x=\frac{1}{2}\)là 2 nghiệm của \(A\left(x\right)\)

1 tháng 5 2019

\(\left(x-2x^2\right)\left(15x^2+7\right)=0\)

Với \(x-2x^2=0\)

\(\Rightarrow x=2x^2\Rightarrow2x=1\)

\(x=\frac{1}{2}\)

Với \(15x^2+7=0\Rightarrow15x^2=-7\)

\(x^2=-\frac{7}{15}\)vô lý)

Vậy nghiệm của đa thứ A(x) là \(x=\frac{1}{2}\)

24 tháng 4 2019

\(C\left(x\right)=\left(x-1\right)\left(x-1\right)-\frac{2}{3}\left(x-1\right)=\left(x-1\right)\left(x-1-\frac{2}{3}\right)=\left(x-1\right)\left(x-\frac{5}{3}\right)\)

Nghiệm của đa thức là: 1; 5/3

22 tháng 4 2019

a) \(H\left(x\right)=3x^2+2x+2012=3\left(x^2+\frac{2}{3}x+\frac{2012}{3}\right)\)

\(=3\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}-\frac{1}{9}+\frac{2012}{3}\right)\)

\(=3\left[\left(x+\frac{1}{3}\right)^2+\frac{6035}{9}\right]=3\left(x+\frac{1}{3}\right)^2+\frac{6035}{3}\ge\frac{6035}{3}>0\forall x\)

Vậy đa thức vô nghiệm

b) \(D\left(x\right)=x^2+4x+4=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Nghiệm của đa thức là -2

c)\(F\left(x\right)=x^3-2x^2-2x+4=0\)

\(\Leftrightarrow x^2\left(x-2\right)-2\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2-2=0\left(1\right)\end{cases}}\).Xét đa thức (1): \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

Vậy...

21 tháng 4 2019

a, Vô nghiệm

b, Nghiệm là x = -2

Học tốt

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

17 tháng 4 2019

Đa thức \(h\left(x\right)=x^3+3x^2+3x+1.\)có nghiệm 

\(\Leftrightarrow x^3+3x^2+3x+1=0\)

\(\Leftrightarrow x^2.\left(1+3x\right)+\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right).\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x^2+1=0\left(ktm\right)\end{cases}\Rightarrow x=-\frac{1}{3}}\)

Vậy   .........

17 tháng 4 2019

Ta có: \(h\left(x\right)=0\Leftrightarrow x^3+3x^2+3x+1=0\) 

                               \(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(x+1\right)=0\)

                               \(\Leftrightarrow x^2.\left(x+1\right)+2x.\left(x+1\right)+\left(x+1\right)=0\)

                                \(\Leftrightarrow\left(x^2+2x+1\right).\left(x+1\right)=0\)

                                 \(\Leftrightarrow\left[\left(x^2+x\right)+\left(x+1\right)\right].\left(x+1\right)=0\)

                                  \(\Leftrightarrow\left[x.\left(x+1\right)+\left(x+1\right)\right].\left(x+1\right)=0\)

                                 \(\Leftrightarrow\left(x+1\right).\left(x+1\right).\left(x+1\right)=0\)

                                  \(\Leftrightarrow\left(x+1\right)^3=0\)

                                    \(\Leftrightarrow x+1=0\)

                                    \(\Leftrightarrow x=-1\)

Vậy...

AH
Akai Haruma
Giáo viên
24 tháng 3 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$

$\geq |2x-4+8-2x|+|2x-6|$

$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix} (2x-4)(8-2x)\geq 0\\ 2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)

25 tháng 3 2023

cảm ơn cô

 

 

\(2x^2+10x+15=0\)

\(\Leftrightarrow2.\left(x^2+5x+\frac{15}{2}\right)=0\Leftrightarrow x^2+5x+\frac{15}{2}=0\)

\(\Leftrightarrow x^2+5x+\frac{25}{4}+\frac{6}{4}=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=-\frac{6}{4}\)

Vậy...

31 tháng 3 2019

\(f\left(x\right)=x^2+x^2+4x+6x+4+9+2\)

           \(=\left(x^2+4x+4\right)+\left(x^2+6x+9\right)+2\)

            \(=\left(x+2\right)^2+\left(x+3\right)^2+2>0\)

Vậy đa thức trên ko có ngiệm

24 tháng 4 2019

\(C\left(x\right)=\left(x-1\right)\left(x-1-\frac{2}{3}\right)=0\)

\(=\left(x-1\right)\left(x-\frac{5}{3}\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{5}{3}\end{matrix}\right.\)