Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
Đặt \(f\left(x\right)=-x^2-2x-3\)
\(=-x^2-x-x-3\)
\(=-x.\left(x-1\right)-\left(x-1\right)-2\)
\(=-[-\left(x-1\right)^2]-2\le-2< 0\)
\(\Rightarrow\)Đa thức không có nghiệm
Đặt \(A=-x^2-2x-3\)
\(\Rightarrow-A=x^2+2x+3\)
\(-A=\left(x^2+2x+1\right)+2\)
\(-A=\left(x+1\right)^2+2\)
\(\Rightarrow A=-\left(x+1\right)^2-2\)
Ta có: \(-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le2\forall x\)
\(\Rightarrow\) Đa thức vô nghiệm
Bài 2.
a) x(x-2)-x+2=0
<=> x2-2x-x+2=0
<=> x2-3x+2=0
<=> x2-x-2x-2=0
<=> x(x-1)-2(x-1)=0
<=> (x-1)(x-2)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
b) x2(x2+1)-x2-1=0
<=> x4+x2-x2-1=0
<=> x4-1=0
<=> x4=1
<=> x=\(\pm\)1
x2 - 25 - (x + 5) = 0
<=> (x - 5)(x + 5) - (x + 5) = 0
<=> (x + 5)( x - 5 - 1) = 0
<=> (x + 5)( x - 6) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
(2x - 1)2 - (4x2 - 1) = 0
<=> (2x - 1)(2x - 1 - 2x - 1) = 0
<=> - 4x(2x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
a) x2-4x+4=25
=> (x-2)2 =25
=>(x-2)2 -25=0
=>(x-2)2 -52=0
=> (x-2-5)(x-2+5)=0
=> x-7=0 hoặc x+3=0
th1: x-7=0
=> x =7
th2: x+3 =0
=> x = -3
Vậy tập nghiệm của S={7; -3}
b) (5-2x)2-16=0
=> (5-2x)2-42=0
=>(5-2x-4)(5-2x+4)=0
th1: 1-2x=0
=> -2x =-1
=> x =1/2
th2: 9-2x=0
=> -2x =-9
=> x =9/2
Vậy tập nghiệm của S={1/2;9/2}