Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
Lời giải:
1.
$4x+9=0$
$4x=-9$
$x=\frac{-9}{4}$
2.
$-5x+6=0$
$-5x=-6$
$x=\frac{6}{5}$
3.
$x^2-1=0$
$x^2=1=1^2=(-1)^2$
$x=\pm 1$
4.
$x^2-9=0$
$x^2=9=3^2=(-3)^2$
$x=\pm 3$
5.
$x^2-x=0$
$x(x-1)=0$
$x=0$ hoặc $x-1=0$
$x=0$ hoặc $x=1$
6.
$x^2-2x=0$
$x(x-2)=0$
$x=0$ hoặc $x-2=0$
$x=0$ hoặc $x=2$
7.
$x^2-3x=0$
$x(x-3)=0$
$x=0$ hoặc $x-3=0$
$x=0$ hoặc $x=3$
8.
$3x^2-4x=0$
$x(3x-4)=0$
$x=0$ hoặc $3x-4=0$
$x=0$ hoặc $x=\frac{4}{3}$
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
A = \(4x^2-3x+7x^2+2x-5\)
\(11x^2-3x+2x-5\)
\(11x^2-x-5\)
B = \(3x+7y-6x-8+y-2\)
\(3x+7y-6x-10+y\)
\(- 3x+7y-10+y\)
\(3x+8y-10\)
C = chịu
D= \(6x^4-3x^2+x^2-4x+3.4-x+2\)
\(6x^4-3x^2+x^2-4x;12-x+2\\ \)
\(6x^4-3x^2+x^2-4x+14-x\)
\(6x^4-2x^2-4x+14-x\)
\(6x^4-2x^2-5x+14\)
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
a) x=6.
b) x=-3/7.
c) x=1/15.
d) x=\(\pm\)2.
e) x=1.
f) Vô nghiệm.
a,( 2x + 1 ).( 3x - 2 )=0
\(\Rightarrow\left[\begin{array}{nghiempt}2x+1=0\\3x-2=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{2}{3}\end{array}\right.\)
b,x2 - 2 x + 1=0
\(\Rightarrow x^2-2\cdot x+1^2=0\)
\(\Rightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x=1\)
c,3x ( x + 2 )- x ( 3x - 1 ) + 7
\(\Rightarrow3x^2+6x-3x^2+x+7=0\)
\(\Rightarrow7x+7=0\)
\(\Rightarrow7x=-7\)
\(\Rightarrow x=-1\)
d,3x2 + 5x - 8=0
\(\Rightarrow3x^2+8x-3x-8=0\)
\(\Rightarrow x\left(3x+8\right)-\left(3x+8\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x+8\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-1=0\\3x+8=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-\frac{8}{3}\end{array}\right.\)
a/ Ta có:
2x+1 = 0 => x= -1/2
3x -2 = 0 => x= 2/3
Vậy nghiệm của (2x+1)(3x-2) là : -1/2 và 2/3