Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
\(a)\) Ta có :
\(A=\frac{8n}{4n-3}=\frac{8n-6+6}{4n-3}=\frac{8n-6}{4n-3}+\frac{6}{4n-3}=\frac{2\left(4n-3\right)}{4n-3}+\frac{6}{4n-3}=2+\frac{6}{4n-3}\)
Để A có giá trị nguyên thì \(\frac{6}{4n-3}\) phải có giá trịn nguyên hay \(6⋮\left(4n-3\right)\)\(\Rightarrow\)\(\left(4n-3\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(4n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(1\) | \(\frac{1}{2}\) | \(\frac{5}{4}\) | \(\frac{1}{4}\) | \(\frac{3}{2}\) | \(0\) | \(\frac{9}{4}\) | \(\frac{-3}{4}\) |
Vì \(n\inℤ\) nên \(n\left\{0;1\right\}\)
Vậy \(n\in\left\{0;1\right\}\) thì A có giá trị nguyên
Chúc bạn học tốt ~
\(b)\) Ta có :
\(A=\frac{8n}{4n-3}=2+\frac{6}{4n-3}\) ( câu a mình có phân tích rùi )
Để A đạt GTNN thì \(\frac{6}{4n-3}\) phải đạt GTNN hay \(4n-3< 0\) và đạt GTLN
\(\Rightarrow\)\(4n-3=-1\)
\(\Leftrightarrow\)\(4n=2\)
\(\Leftrightarrow\)\(n=\frac{1}{2}\) ( loại vì n là số nguyên )
\(\Rightarrow\)\(4n-3=-2\)
\(\Leftrightarrow\)\(4n=1\)
\(\Leftrightarrow\)\(\frac{1}{4}\)
\(\Rightarrow\)\(4n-3=-3\)
\(\Leftrightarrow\)\(4n=0\)
\(\Leftrightarrow\)\(n=0\)
Suy ra :
\(A=\frac{8n}{4n-3}=\frac{8.0}{4.0-3}=\frac{0}{0-3}=0\)
Vậy \(A_{min}=0\) khi \(n=0\)
Chúc bạn học tốt ~
\(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)
Để \(A\)có GTLN \(\Leftrightarrow\)4-x có GTNN, \(4-x>0\)và \(x\inℤ\)
\(\Rightarrow4-x=1\Rightarrow x=3\)
Vậy, A có GTLN là 11 khi x=3
Có \(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)
Nếu A có GTLN \(\Rightarrow\)4-x có GTNN \(\Rightarrow\)4 - x > 0 ( x \(\inℤ\))
\(\Rightarrow\)4 - x = 1
\(\Leftrightarrow\)x = 3
Vậy A có GTLN là 11 nếu x = 3
a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)
Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)
Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5
b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)
Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3
Ta có: \(\left(3y+7\right)^2\ge0\Rightarrow\left(3y+7\right)^2+5\ge5\)
=>\(G=\frac{2}{\left(3y+7\right)^2+5}\le\frac{2}{5}\)
Dấu "=" xảy ra khi: 3y+7=0 =>y=-7/3
Vậy GTLN của G là 2/5 tại y=-7/3
:))
\(A=\frac{4+x}{x+3}=\frac{x+3+1}{x+3}=1+\frac{1}{x+3}\)(x\(\ne\)-3)
de A thuoc Z ma x thuoc Z \(\Leftrightarrow x+3\in\)Ư(3)={1;-1;3;-3}
ta co bang
x+3 | 1 | -1 | 3 | -3 |
x | -2(tm) | -4(tm) | 0(tm) | -6(tm) |
vay de A thuoc Z khi x \(\in\){-2;-4;0;-6}
co \(|^{ }_{ }x+1|^{ }_{ }\ge0\)voi moi x
\(\Rightarrow|^{ }_{ }x+1|^{ }_{ }-2\ge-2\)hay B \(\ge\)-2
dau "=" xay ra khi x+1=0\(\Leftrightarrow\)x=-1
vay voi x=-1 thi B dat gia tri nho nhat la -2