Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n+5)/(n+1)=[(n+1) +4]/(n+1)
=1 +4/(n+1)
chia hết khi VP là số tự nhiên
---> 4/(n+1) là số tự nhiên
--> n+1 bằng 1,2,4
---> n bằng 0, 1 , 3
và ngược lại
n-1 chia hêt cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc{-6;-4;-7;-3;-11;1}
n + 5 chia hết cho n - 1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {0;2;-1;3;-2;4;-5;7}
2n + 3 ⋮ n + 5
=> 2n + 10 - 7 ⋮ n + 5
=> 2(n + 5) - 7 ⋮ n + 5
2(n + 5) ⋮ n + 5
=> 7 ⋮ n + 5
=> n + 5 ∈ Ư(7) = {-1; 1; -7; 7}
=> n thuộc {-6; -4; -12; 2}
vậy_
b tương tự
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3-2 chia hết cho n-2
1 chia hết cho n-2
nên: n-2 E Ư(1)={1:-1}
Xét:
n-2=1 n-2=-1
n =1+2 n =-1+2
n =3 E Z(chọn) n =1 E Z(chọn)
Vậy:n={1;3}
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3+2 chia hết cho n-2
5 chia hết cho n-2
nên: n-2 E Ư(5)={1:-1;5;-5}
Xét:
n-2=1 n-2=-1 n-2=5 n-2=-5
n =1+2 n =-1+2 n =5+2 n =-5+2
n =3 n =1 n =7 n=-3
Vậy:n={1;3;-3;7}
Vì quá nhiều nên mk làm sơ sơ thôi
a) 15 chia hết cho n+1
=> n+1 thuộc Ư(15)={-15;-14;...14;15}
=> n thuộc { -16;-15;...;13;14}
b) 3n+5 chia hết cho n+1
=> 3n+3+2=3(n+1)+2 chia hết cho n+1
Do 3(n+1) chia hết cho n+1 => 2 chia hết cho 1 ( đến đây làm tương tự câu a)
c) n+7 chia hết cho n+1
=> (n+1)+6 chia hết cho n+1
=> 6 chia hết cho n+1 ( cũng làm tương tự)
d) 4n+7 chia hêt cho n-2
=> (4n-8)+15 chia hết cho n-2
=> 4(n-2) + 15 chia hết cho n-2
=> n-2 thuộc Ư(15)={-15;-14;...;14;15}
=> n thuộc {-13;-14;...;16;17}
e) 5n+8 chia hết cho n-3
=> (5n-15)+23 chia hết cho n-3
=> 5(n-3)+23 chia hết cho n-3 ( đến đây thì giống câu trên nhé)
f) 6n+8 chia hết cho 3n+1
=> 2(3n+1)+6 chia hết cho 3n+1
=> 3n+1 thuộc Ư(6) ( đến đây bạn tự làm giống n~ câu trên nhé
a) Vì 15 chia hết cho n + 1
=> n + 1 thuộc ước của 15
n + 1 thuộc { 1 ; 3 ; 5 ; 15 }
=> n thuộc { 0 ; 2 ; 4 ; 14 }
Đặt A=n(n+2)(n+7)
TH1: n=3k => A hiển nhiên chia hết cho 3
TH2: Nếu n=3k+1 => A=(3k+1)(3k+1+2)(3k+1+7)=(3k+1).3(k+1)(3k+8) chia hết cho 3
TH3: Nếu k=3k+2 => A=(3k+2)(3k+2+2)(3k+2+7)=(3k+2)(3k+4).3(k+3) chia hết cho 3
Vậy A chia hết cho 3 với mọi n thuộc Z
a) (n+5)/(n+1)=[(n+1) +4]/(n+1)
=1 +4/(n+1)
chia hết khi VP là số tự nhiên
---> 4/(n+1) là số tự nhiên
--> n+1 bằng 1,2,4
---> n bằng 0, 1 , 3
b)x(y-1)+2(y-1)-5=0
(x+2)(y-1)=-5
Vì x +2 > 0=>y-1<0
Mà y thuộc N=>y-1=-1=>y=0
x+2=5=>x=3
\(\left(xy+x\right)+2y=5\Leftrightarrow x\left(y+1\right)+2\left(y+1\right)=7\)
\(\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Biểu diễn x + 2 theo y + 1,ta có: \(y+1=\frac{7}{x+2}\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Mà \(x,y\inℕ\Rightarrow y+1\ge1;x+2\ge2\)
Suy ra \(x+2=7\Leftrightarrow x=5\)
Thay x = 5 vào,ta có: \(y+1=\frac{7}{5+2}=1\Leftrightarrow y=0\)
Nếu y + 1 = 7 \(\Rightarrow y=6\Rightarrow x+2=\frac{7}{y+1}=\frac{7}{6+1}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\) (loại) vì x,y là số tự nhiên.
Vạy \(\left(x;y\right)=\left(5;0\right)\)
Ta có:
a)n-6 chia hết cho n-1
n-1+5 chia hết cho n-1
5 chia hết cho n-1
n-1 thuộc ước của 5
n-1=1 hoặc n-1=5
n thuộc 2;6
b)3-n chia hết cho 1-n
2+1-n chia hết cho 1-n
2 chia hết cho 1-n
1-n thuộc ước của 2
1-n=1 hoặc 1-n=2
n thuộc 0:-1
c)5+n chia hết cho 2+n
3+2+n chia hết cho 2+n
3 chia hết cho 2+n
2+n thuộc ước của
2+n=1 hoặc 2+n=3
n thuộc -1;1
Phan Bảo Huân: 2 + n thuộc ước của ......sao bạn ko điền vào luôn đi
=> 3n +4 chia hết cho 3n-3
=> => 3n+4 chia hết cho 3n+4 -7
=> 7 chia hết cho 3n + 4
=> 3n+4 thuộc ước 7 = +- 7, +-1
=> 3n=.............
n=.....
Ta có: 3n+4
=3n-3 +7
Ta thấy:3n-3 chia hết cho n-1=)1 cũng chia hết cho n-1 mà nEN
(=) n-1=0 =) n=1
Vậy n=1
*lưu ý: E là thuộc
Ta có:\(n^2+n⋮n-1\)
\(\Rightarrow n\left(n-1\right)+2n⋮n-1\)
\(\Rightarrow n\left(n-1\right)+2\left(n-1\right)+2⋮n-1\)
\(\Rightarrow2⋮n-1\Rightarrow n-1\varepsilonƯ\xi\pm1;\pm2\xi\)
Bn tự kẻ bảng hộ mk nha