Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n - 4 ⋮ n - 3
2n - 6 + 2 ⋮ n - 3
2( n - 3 ) + 2 ⋮ n - 3
Vì 2( n - 3 ) ⋮ n - 3
=> 2 ⋮ n - 3
=> n - 3 thuộc Ư(2) = { 1; -1; 2; -2 }
=> n thuộc { 4; 2; 5; 1 }
Vậy,......
- Các câu còn lại tương tự
\(a,2n-4⋮n-3\Leftrightarrow2n-6+2⋮n-3\)
\(\Leftrightarrow2\left(n-3\right)+2⋮n-3\Leftrightarrow2⋮n-3\left(n-3\inℤ\right)\)
\(\Leftrightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow n\in\left\{2;4;1;5\right\}\)
Vậy \(n=1;2;4;5\)
a) 32 . 3n = 35
=> 3n = 35 : 32
=> 3n = 33
=> n = 3
các câu còn lại tương tự!!
chúc bạn học tốt!! ^^
56546475686594737262362353454363565475475485489456231532543643654745745624
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
a)Gọi ƯCLN (\(n+3;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(n+3;2n+5\))=1
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)
b)Gọi ƯCLN (\(2n+9;3n+14\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(2n+9;3n+14\))=1
\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)
c)Gọi ƯCLN(\(6n+11;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)
\(\Rightarrow4⋮d\)
Mà \(\left(6n+15\right);\left(6n+11\right)⋮̸2\)
\(\Rightarrow d=1\)
⇒ƯCLN(\(6n+11;2n+5\))=1
\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)
d)Gọi ƯCLN(\(12n+1;30n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(12n+1;30n+2\))=1
\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)
e)Gọi ƯCLN(\(21n+4;14n+3\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(21n+4;14n+3\))=1
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)
f) Gọi ƯCLN(\(2n+3;n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(2n+3;n+2\))=1
\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(n+1;3n+2\))=1
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
a) 5
b)23
c)56
d)12
e) 52
g)127
f)90