Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
Để \(n^2+2n+7⋮n+2\)
\(\Rightarrow n\left(n+2\right)+7⋮n+2\)
Vì \(n\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)\Rightarrow n+2\in\left\{1;7\right\}\Rightarrow n\in\left\{-1;5\right\}\)
Để \(n^2+1⋮n-1\)
=> \(n^2-1+2⋮n-1\)
\(\Rightarrow\left(n^2-n+n-1\right)+2⋮n-1\)
\(\Rightarrow\left[n\left(n-1\right)+\left(n-1\right)\right]+2⋮n-1\)
=> (n - 1)(n + 1) + 2\(⋮n-1\)
Vì (n - 1)(n + 1) \(⋮n-1\)
=> 2\(2⋮n-1\Rightarrow n-1\inƯ\left(2\right)\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\)
Để \(n^2+2n+6⋮n+4\)
=> \(n^2+4n-2n-8+14⋮n+4\)
=> \(n\left(n+4\right)-2\left(n+4\right)+14⋮n+4\)
=> \(\left(n-2\right)\left(n+4\right)+14⋮n+4\)
Vì \(\left(n-2\right)\left(n+4\right)⋮n+4\)
=> \(14⋮n+4\Rightarrow n+4\inƯ\left(14\right)\Rightarrow n+4\in\left\{1;2;7;14\right\}\Rightarrow n\in\left\{-3;-2;3;10\right\}\)
Để n2 + n + 1 \(⋮n+1\)
=> \(n\left(n+1\right)+1⋮n+1\)
Vì \(n\left(n+1\right)⋮n+1\)
=> \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)\Rightarrow n+1=1\Rightarrow n=0\)
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
c) n2 + 2n + 7 chia hết cho n + 2
=> n(n + 2) + 7 chia hết cho n + 2
Mà n(n + 2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=> n + 2 \(\in\){-1;1;-7;7}
=> n \(\in\){-3;-1;-9;5}
a) n + 6 chia hết cho n
Mà n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\){-1;1;-2;2;-3;3;-6;6}
Mà n thuộc N
=. n \(\in\){1;2;3;6}
\(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\in\left\{1,5,-1,-5\right\}\)
\(\Rightarrow n\in\left\{2,6,0,-4\right\}\)
\(2n-3⋮n+1\)
\(\Rightarrow2\left(n+1\right)-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\in\left\{6,1,2,3,-1,-6,-2,-3\right\}\)
\(\Rightarrow n\in\left\{5,0,1,2,-2,-7,-3,-4\right\}\)
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
\(a,\frac{n+6}{n+2}=\frac{n+2+4}{n+2}=1+\frac{4}{n+2}\)
Để \(n+6⋮n+2\Rightarrow\frac{4}{n+2}\in N\Leftrightarrow n+2\in\left(1;2;4\right)\)
\(\Rightarrow n\in\left(-1;0;2\right)\)
Vì \(n\in N\Rightarrow n\in\left(0;2\right)\)
\(b,2n+3⋮n-2\)
\(\Rightarrow2n-4+7⋮n-2\)
Do \(2n-4⋮n-2\Rightarrow7⋮n-2\)
\(\Rightarrow n-2\in\left(1;7\right)\)
\(\Rightarrow n\in\left(3;9\right)\)
\(d,n^2+4⋮n+1\)
\(\Rightarrow n^2+1+4⋮n+1\)
\(\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\in\left(1;2;4\right)\)
\(\Rightarrow n\in\left(0;1;3\right)\)