Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4n + 5 ⋮ n ( n \(\in\) N*)
5 ⋮ n
n \(\in\)Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 38 - 3n ⋮ n (n \(\in\) N*)
38 ⋮ n
n \(\in\) Ư(38)
38 = 2.19
Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}
Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}
c, 3n + 4 ⋮ n - 1 ( n \(\in\) N; n ≠ 1)
3(n - 1) + 7 ⋮ n - 1
7 ⋮ n -1
n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
lập bảng ta có:
n - 1 | -7 | -1 | 1 | 7 |
n | -6 (loại) | 0 | 2 |
8 |
Theo bảng trên ta có n \(\in\) {0 ;2; 8}
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
(3n - 1) ⋮ (2n - 1)
⇒ 2(3n - 1) ⋮ (2n - 1)
⇒ (6n - 2) ⋮ (2n - 1)
⇒ (6n - 3 + 1) ⋮ (2n - 1)
⇒ [3(2n - 1) + 1] ⋮ (2n - 1)
⇒ 1 ⋮ (2n - 1)
⇒ 2n - 1 ∈ Ư(1) = {-1; 1}
⇒ 2n ∈ {0; 2}
⇒ n ∈ {0; 1}
3n - 1 ⋮ 2n - 1
2(3n-1) ⋮ 2n-1
3(2n-1)+1⋮ (2n-1)
1 ⋮ (2n-1)
(2n- 1 ) \(\in\) \(\)Ư(1) = \(\left\{-1;1\right\}\)
2n-1 | -1 | 1 |
n | 0 | 1 |
Theo bảng trên ta có
n ϵ { 0:1}
n + 6 chia hết cho n + 2
=> n + 2 + 4 chia hết cho n + 2
=> 4 chia hết cho n + 2
=> n + 2 thuộc Ư(4)
=> n + 2 thuộc {-4 ; -2 ; -1 ; 1 ; 2 ; 4}
=> n thuộc {-6 ; -4 ; -3 ; -1 ; 0 ; 2}
n thuộc N
=> n thuộc {0 ; 2}
2n + 3 chia hết cho n - 2
=> 2n - 4 + 7 chia hết cho n - 2
=> 2(n - 2) + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc U(7)
=> n - 2 thuộc {-7 ; -1 ; 1 ; 7}
=> n thuộc {-5 ; 1 ; 3 ; 9}
n thuộc N
=> n thuộc {1 ; 3 ; 9}
để (n+6) ch cho n+2 thì n+2+4 phải chia hết cho n+2
n+2 chia hết cho n+2 nên 4 phải chia hết cho n+2
=>n+2 thuộc ước của 4 từ đó tính ra n
các câu sau làm tương tự nha chứ gõ nhiều mỏi tay lém
a, n+5 chia hết cho n+2
n+2 chia hết cho n+2
=> (n+5) - (n+2) chia hết cho 2
n+5-n-2 chia hết cho 2
3 chia hết cho 2
=>2 thuộc Ư(3)=...
b, 2n+1 chia hết cho n+5
n+5 chia hết cho n+5 => 2(n+5) chia hết cho n+5
Làm tương tự ý a
c, n2+3n+13 = n (n+3) +13
Mà n(n+3) chia hết cho n+3
=> 13 chia hết cho n+3
=> n+3 thuộc Ư(13)
=>...
a)n+6 chia hết cho n + 2
ta có n+6= (n+2) +4
vì n+2 chia hết cho n+2 =>để (n+2) +4 chia hết cho n + 2 thì 4 phải chia hết cho n+2
=>(n+2) Є {2;4} (vì n+2 >=2)
=>n Є {0;2}
b) 3n + 1 chia hết cho 11 - 2n
để 11 -2n >=0 => n Є {0;1;2;3;4;5}
mặt khác để 3n + 1 chia hết cho 11 - 2n thì
3n+1 >= 11-2n =>5n - 2n+1 >=10-2n +1
=>5n >= 10 =>n>=2 => n Є {2;3;4;5}
* với n=2 => 3n+1=7 ; 11-2n=7 =>3n+1 chia hết cho 11-2n vậy n=2 thỏa mãn
*với n=3 => 3n+1=10; 11-2n=5 =>3n+1 chia hết cho 11-2n vậy n=3 thỏa mãn
* với n=4 =>3n+1=13; 11-2n=3 =>3n+1 không chia hết cho 11-2n vậy n=4 không thỏa mãn
*với n=5 =>3n+1=16; 11-2n=1 =>3n+1 chia hết cho 11-2n vậy n=5 thỏa mãn
vậy n Є {2;3;5}
3n + 1 chia hết cho 11 - 2n
=> 2.(3n + 1) chia hết cho 11 - 2n
=> 6n + 2 chia hết cho 11 - 2n
=> 35 - 33 + 6n chia hết cho 11 - 2n
=> 35 - (33 - 6n) chia hết cho 11 - 2n
=> 35 - 3.(11 - 2n) chia hết cho 11 - 2n
Vì 3.(11 - 2n) chia hết cho 11 - 2n => 35 chia hết cho 11 - 2n
Đến đây dễ r`