K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

so 2 phai ko

24 tháng 5 2022

sai bét

13 tháng 3 2021

Do 2n + 1 là số chính phương lẻ nên 2n + 1 chia cho 4 dư 1. Suy ra n chẵn.

Do đó 3n + 1 là số chính phương lẻ. Suy ra 3n + 1 chia cho 8 dư 1 nên n chia hết cho 8.

Ta có số chính phương khi chia cho 5 dư 0; 1 hoặc 4.

Do đó \(2n+1;3n+1\equiv0;1;4\left(mod5\right)\).

Mặt khác \(2n+1+3n+1=5n+2\equiv2\left(mod5\right)\).

Do đó ta phải có \(2n+1;3n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\).

Từ đó n chia hết cho 40.

Với n = 40 ta thấy thỏa mãn

Với n = 80 ta tháy không thỏa mãn.

Vậy n = 40.