Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UC(9n+24;3n+4)
=>9n+24 chia hết cho d
và 3n+4 chia hết cho d=>3(3n+4) chia hết cho d hay 9n+12 chia hết cho d
=>(9n+24)-(9n+12) chia hết cho d hay 12 chia hết cho d=> d thuộc{1;2;3;4;6;12}
d khác 4;6;12 vì nếu nhân 9n+24 hoặc 3n+4 cho các số đó thì sẽ ra kết quả là số chẵn(loại TH này)
Điều kiện để(9n+24;3n+4)=1 là d khác 2 và d khác 3.
vì 3n+4 ko chia hết cho 3 nên d khác 3
muốn d khác 2 thì 1 trong 2 số 9n+24 và 3n+4 là lẻ
để 9n+24 lẻ <=> 9n lẻ <=> n lẻ
để 3n+4lẻ <=>3n lẻ=>n lẻ
vậy để 9n+24 và 3n+4 là nguyên tố cùng nhau khi n lẻ
tick nha!!!!!!!!!!!!!!!!!!
Đặt A=9n+24 và B=3n+4
Ta có ƯCLN(A;B)=d
A-B=9n+24-9n-12=12=3.4
Vì 3;4 là nguyên tố cùng nhau nên A-B cũng là nguyên tố cùng nhau
Vậy: (9n+24;3n+4) nguyên tố cùng nhau
1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
1.c)1. Xét nn chẵn, hai số đều chẵn →→ không nguyên tố cùng nhau
2.2. Xét nn lẻ, ta chứng minh 22 số này luôn nguyên tố cùng nhau
9n+24=3(3n+8)9n+24=3(3n+8)
Vì 3n+43n+4 không chia hết cho 33, nên ta xét tiếp 3n+83n+8
Giả sử kk là ước số của 3n+83n+8 và 3n+43n+4, đương nhiên kk lẻ (a)(a)
→k→k cũng là ước số của (3n+8)−(3n+4)=4→k(3n+8)−(3n+4)=4→k chẵn (b)(b)
Từ (a)(a) và (b)→(b)→ Mâu thuẫn
Vậy với nn lẻ, 22 số đã cho luôn luôn nguyên tố cùng nhau
Lời giải:
Gọi $d=ƯCLN(9n+24, 3n+4)$
$\Rightarrow 9n+24\vdots d; 3n+4\vdots d$
$\Rightarrow 9n+24-3(3n+4)\vdots d$
$\Rightarrow 12\vdots d$
Để $9n+24, 3n+4$ nguyên tố cùng nhau thì $d=1$, tức là $(12,d)=1$. Mà $12=2^2.3$ nên $(12,d)=1$ khi mà $(2,d)=(3,d)=1$
$\Leftrightarrow 9n+24, 3n+4$ không đồng thời chia hết cho 2 và 3.
------------------------
$9n+24, 3n+4$ không đồng thời chia hết cho 2 khi mà $3n+4\not\vdots 2$
$\Leftrightarrow 3n\not\vdots 2$
$\Rightarrow n\not\vdots 2$ hay $n$ lẻ.
$9n+24, 3n+4$ không đồng thời chia hết cho 3 khi mà $3n+4\not\vdots 3$ (do $9n+24$ đã chia hết cho 3 rồi)
Hiển nhiên $3n+4\not\vdots 3$ do $4\not\vdots 3$
Vậy tóm lại chỉ cần $n$ lẻ là 2 số trên nguyên tố cùng nhau
gọi d là ước chunng của 9n+24 và 3n+4
ta có : 9n+24\(⋮\)d
và 3n+4\(⋮\)d
=>9n+24-3n+4\(⋮\)d
=>6n+20\(⋮\)d
để 9n+24 và 3n+4 là 2 số nguyên tố cùng nhau=>d=1,-1
bí
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
9n+24 = 3(3n+4) +12
=> 12 và 3n+4 nguyên tố cùng nhau
+ n =2 k => 12 và 3n+4 có ước chung là 12 ( loại)
+ n =2k+1 => 12 ; 6k +7 = 6(k+1) +1 nguyên tố cùng nhau
Vậy n là số lẻ
Gọi ƯCLN(9n+24; 3n+4) là d. Ta có:
9n+24 chia hết cho d
3n+4 chia hết cho d => 9n+12 chia hết cho d
=> 9n+24-(9n+12) chia hết cho d
=> 12 chia hết cho d
=> d thuộc Ư(12)
Giả sử 9n+24 và 3n+4 không nguyên tố cùng nhau
=> 3n+4 chia hết cho 4
=> 3n+4-4 chia hết cho 4
=> 3n chia hết cho 4
=> n = 4k
=> Để 9n+24 và 3n+4 nguyên tố cùng nhau thì n khác 4k