Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"khi xoá bỏ chữ số 4 ở tận cùng bên phải của số lớn ta được số bé." Nghĩa là số lớn gấp 10 lần số bé thêm 4 đơn vị.
Số bé là: (499 - 4) : (1 + 10) = 45
ĐS: 45
Có phải thế này ko bn
Tìm Max A ( a#0, b#0, a,b là c/s)
sao cho A và A đều là số cp
Coi vẻ khó nhỉ
Bài 1:
Gọi số bé là ab, số lớn là 4ab
Theo bài ra ta có: 4ab+ab=446
=>400+ab+ab=446
=>2.ab=446-400
=>2.ab=46
=>ab=46:2
=>ab=23
=>4ab=423
Vậy 2 số cần tìm là 23 và 423
Bài 2:
Gọi số cầm tìm là ab
Theo bài ra ta có: 3ab=5.ab
=>300+ab=5.ab
=>5.ab-ab=300
=>ab=300:4
=>ab=75
Vậy số cần tìm là 75.
viết thêm chữ số 4 là cộng 400 rồi vẽ sơ đồ tổng và tỉ
Ta có \(2016^{2017}=\left(2000+16\right)^{2017}\) \(=1000P+16^{2017}\)
Suy ra 3 chữ số tận cùng của số đã cho chính là 3 chữ số tận cùng của \(N=16^{2017}\).
Dễ thấy chữ số tận cùng của N là 6.
Ta tính thử một vài giá trị của \(16^n\):
\(16^1=16;16^2=256;16^3=4096;16^4=65536\)\(;16^5=1048576\); \(16^6=16777216\);...
Từ đó ta có thể dễ dàng dự đoán được quy luật sau: \(16^{5k+2}\) có chữ số thứ hai từ phải qua là 5 với mọi số tự nhiên k. (1)
Chứng minh: (1) đúng với \(k=0\).
Giả sử (*) đúng đến \(k=l\ge0\). Khi đó \(16^{5l+2}=100Q+56\). Ta cần chứng minh (1) đúng với \(k=l+1\). Thật vậy, \(16^{5\left(l+1\right)+2}=16^{5l+2}.16^5\) \(=\left(100Q+56\right)\left(100R+76\right)\) \(=10000QR+7600Q+5600R+4256\) có chữ số thứ hai từ phải qua là 5.
Vậy (*) đúng với \(k=l+1\), vậy (*) được chứng minh. Do \(N=16^{2017}=16^{5.403+2}\) nên có chữ số thứ 2 từ phải qua là 5.
Ta lại thử tính một vài giá trị của \(16^{5k+2}\) thì thấy:
\(16^2=256;16^7=...456;16^{12}=...656;16^{17}=...856;...\)
Ta lại dự đoán được \(16^{25u+17}\) có chữ số thứ 3 từ phải sang là 8 với mọi số tự nhiên \(u\). (2)
Chứng minh: (2) đúng với \(u=0\)
Giả sử (2) đúng đến \(u=v\ge0\). Khi đó \(16^{25u+17}=1000A+856\). Cần chứng minh (2) đúng với \(u=v+1\). Thật vậy:
\(16^{25\left(u+1\right)+17}=16^{25u+17}.16^{25}\) \(=\left(1000A+856\right)\left(1000B+376\right)\)
\(=1000C+321856\) có chữ số thứ 3 từ phải sang là 856.
Vậy khẳng định đúng với \(u=v+1\) nên (2) được cm.
Do đó \(N=16^{2017}=16^{25.80+17}\) có chữ số thứ 3 từ phải qua là 8.
Vậy 3 chữ số tận cùng bên phải của số đã cho là \(856\)
a/ Ta chứng minh: \(B=\left(\sqrt{3}+\sqrt{2}\right)^{2n}+\left(\sqrt{3}-\sqrt{2}\right)^{2n}=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n\) là số nguyên với mọi n
Với \(n=0\Rightarrow B=2\)
Với \(n=1\Rightarrow B=10\)
Giả sử nó đúng đến \(n=k\) hay
\(\hept{\begin{cases}\left(5+2\sqrt{6}\right)^{k-1}+\left(5-2\sqrt{6}\right)^{k-1}=a\\\left(5+2\sqrt{6}\right)^k+\left(5-2\sqrt{6}\right)^k=b\end{cases}}\) \(\left(a,b\in Z\right)\)
Ta chứng minh nó đúng đến \(n=k+1\)
Ta có: \(\left(5+2\sqrt{6}\right)^{k+1}+\left(5-2\sqrt{6}\right)^{k+1}\)
\(=\left(5+2\sqrt{6}\right)\left(b-\left(5-2\sqrt{6}\right)^k\right)+\left(5-2\sqrt{6}\right)\left(b-\left(5+2\sqrt{6}\right)^k\right)\)
\(=b\left(5+2\sqrt{6}\right)-\left(5-2\sqrt{6}\right)^{k-1}+b\left(5-2\sqrt{6}\right)-\left(5+2\sqrt{6}\right)^{k-1}\)
\(=10b-a\)
Vậy ta có điều phải chứng minh
b/ Đặt \(S_n=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n=x^n+y^n\)
Ta có: \(\hept{\begin{cases}x^2=10x-1\\y^2=10y-1\end{cases}}\)
\(\Rightarrow S_{n+2}=x^{n+2}+y^{n+2}=10\left(a^{n+1}+b^{n+1}\right)-\left(a^n+b^n\right)=10S_{n+1}-S_n\)
\(\Rightarrow S_{n+2}+S_n=10S_{n+1}⋮10\)
Tương tự cũng có: \(S_{n+4}+S_{n+2}=10S_{n+3}⋮10\)
\(\Rightarrow S_{n+4}-S_n⋮10\)
Từ đây ta thấy được \(S_{n+4}\equiv S_n\left(mod10\right)\)
Mà \(S_0=2\)
Vậy với mọi n chia hết cho 4 thì số tận cùng của B là 2.
Quay lại bài toán ta thấy \(1004⋮4\) nên M sẽ có chữ số tận cùng là 2.
ta có \(n\in N\)
cho \(n\in\left(1..10\right)\)
từ 1...10 có 2 số 1 và 0 là co \(\sqrt[3]{n}\)bằng chính nó
từ 1...1000 có 1 số là 1000 vì nếu bỏ 3 chữ số tận cùng thì \(\sqrt[3]{1}=1\)
giả sử
Là sao ạ. bạn làm rõ hơn được ko ạ