Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2+ 2006 = a2 ( a\(\in\) Z) a2 – n2 = 2006<=> (a-n) (a+n) = 2006 (*)
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n) chia hết 2 và (a+n)chia hết 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không
thỏa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương
a, ko có số n thỏa mãn
b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3
a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.
a,n=1 thì tm
n=2 thì ko tm
n=3 thì tm
n=4 thì ko tm
n >= 5 thì n! chia hết cho 2 và 5 => n! có tận cùng là 0
Mà 1!+2!+3!+4! = 33
=> 1!+2!+3!+4!+.....+n! có tận cùng là 3 nên ko chính phương
Vậy n thuộc {1;3}
k mk nha
Đặt :n^2+2006=a^2(a thuoc Z)
=>2006=a^2-n^2=(a-n)(a+n) (1)
Mà : (a+n)-(a-n)=2n chia het cho 2
=>a+n và a-n có cùng ính chẵn lẻ
TH1:a+n và a-n cùng lẻ =>(a-n)9a+n) lẻ , trái với (1)
TH2:a+n và a-n cùng chẵn => (a-n)(a+n) chia het cho 4 , trái với (1)
Vậy ko co n thoa man n^2+2006 la so chinh phuong
****
Gọi n2 + 2006 = a2 [ a thuộc N* ]
=> 2006 = a2 - n2 = [ a - n ] . [ a + n ][ 1 ]
Mà [ a + n ] - [ a - n ] = 2n chia hết cho 2
=> a + n và a - n có chung tính chẵn lẻ
a + n và a - n cùng lẻ => [ a-n ] . [ a + n ] lẻ trái với [ 1 ]
a + n và a - n cùng chẵn => [ a - n ] . [ a + n ] chia hết cho 4 mà 2006 không chia hết cho 4
Vậy không có n thỏa mãn để n2 + 2006 là số chính phương
Chúc bạn học tốt
Mình chỉ biết làm thê thôi , nếu sai mong mọi người bỏ qua cho
n^2+3n=a^2 nhân 4 lên 4n^2+12n=4a^2
4n^2+12n+9-9=4a^2
(2n-3)^2 - 4a^2 = 9
(2n-2a-3)(2n+2a-3) = 9
Lập bảng ra
Vì số chính phương khi chia cho 4 chỉ có thể chia hết hoặc dư 1 mà 2014 chia 4 dư 2
suy ra chia 4 dư 2 hoặc dư 3.
Vậy không là số chính phương.
Giả sử tồn tại m \(\in\)N để m2 + 2014 là số chính phương
=> m2 + 2014 = n2 ( n \(\in\)N*)
n2 - m2 = 2014
Xét : (n - m )( m+n) = (n-m)n + (n-m)m = n2 - m.n + m.n - m2 = n2 - m2
( n-m)( n + m) = 2014 (1)
Thấy ( n-m )+( n + m) = 2n là số chẵn
Vậy n -m và n +m là hai số cùng chẵn hoặc cùng lẻ
(n -m)(n+m) = 2014 là 1 số chẵn
=> n - m và n + m không thể là hai số lẻ
=> n - m và n + m không thể là hai số chẵn.
=> n - m = 2p và m +n = 2q ( p;q \(\in\)N)
=> (n-m)(n +m) = 2p . 2q = 4pq
=> (n-m)(n+m) \(⋮\)4 (2)
Mà 2014 \(⋮̸\)4 (3)
Từ (1),(2),(3) => Giả sử này sai => không có m t/m
Đặt n2 + 2006 = a2 (a thuộc Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=>a + n và a - n có cùng tính chẵn lẻ
+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a∈ Z ) ⇔ a2 – n2 = 2006 ⇔ ( a - n ) ( a + n ) = 2006 ( * )
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của ( * ) là số lẻ nên không thỏa mãn ( * )
+ Nếu a,n cùng tính chẵn hoặc lẻ thì ( a - n )chia hết cho 2 và ( a + n ) chia hết cho 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn ( * ).
Vậy không tồn tại n để n2 + 2006 là số chính phương.