Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{6n-3}{2n+1}=\frac{6n+3-6}{2n+1}=\frac{3.\left(2n+1\right)-6}{2n+1}=\frac{3.\left(2n+1\right)}{2n+1}-\frac{6}{2n+1}=3-\frac{6}{2n+1}\)
Để phân số là số tự nhiện
\(\Rightarrow\frac{6}{2n+1}\in z\)( \(\frac{6}{2n+1}\le3\))
\(\Rightarrow6⋮2n+1\Rightarrow2n+1\inƯ_{\left(6\right)}=\left(3;-3;2;-2;1;-1;6;-6\right)\)
mà 6/2n+1 =< 3 => 2n+1 = 6 ( Loại)
nếu 2n+1 = 3 => 2n = 2 => n = 1
2n+1 = -3 => 2n = -4 => n = -2
2n+1 = 2 => 2n = 1 => n = 1/2
2n+1 = - 2 => 2n = -3 => n = -3/2
2n+1 = -6 => 2n = - 7 => n = -7/2
KL: \(n\in\left(1;-2;\frac{1}{2};\frac{-3}{2};\frac{-7}{2}\right)\)
B = \(\frac{2n+9}{n+2}\)+ \(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)
B= \(\frac{2n+9+5n+17-3n}{n+2}\)
B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)
B= \(\frac{4n+9+17}{n+2}\)= \(\frac{4n+26}{n+2}\)
Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> (4n+26) - 4(n+2)\(⋮\)n+2
=> 4n+26 - 4n - 8 \(⋮\)n+2
=> 18 \(⋮\)n+2
=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}
=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}
Vậy...
ta có: \(y=\frac{4n-5}{2n-1}=\frac{4n-2-3}{2n-1}=\frac{2.\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}.\)
Để y là số tự nhiên
=> 3/2n-1 là số tự nhiên
=> 3 chia hết cho 2n -1
=> 2n - 1 thuộc {1;3}
...
Ta có:\(\frac{n}{2n+1}=\frac{3\cdot n}{3\cdot\left(2n+1\right)}\)
\(=\frac{3n}{6n+3}\)
Đến đây so sánh tử số.
Có \(\frac{n}{2n+1}=\frac{3n}{3\left(2n+1\right)}=\frac{3n}{6n+3}\)
Xét 2 mẫu của phân số: \(6n+3=6n+3\)
Xét 2 tử số của hai phân số: \(3n+1>3n\)
\(\Rightarrow\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)(phân số nào cùng mẫu, có tử lớn hơn thì lớn hơn)