Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Đặt UCLN(2n+7, 5n+2)=d
=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)
5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)
Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)
=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)
Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)
Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)
5n+11 chia hết (n+1)
=>5n+5+6 chia hết (n+1)
=>5(n+1)+6 chia hết cho (n+1)
vì (n+1) chia hết cho (n+1)=> 5(n+1) chia hết cho (n+1)
do vậy để 5(n+1)+6 chia hết cho (n+1) thì 6 phải chia hết cho (n+1)
=> (n+1) phải là ước của 6
U(6)={-6,-3,-2,-1,1,2,3,6}
=> n={-7,-4,-3,-2,0,1,2,5}
Vì n tự nhiện=> n={0,1,2,5}
5n+11 chia hết cho n+1
Mà n+1 chia hết cho n+1
=>(5n+11)-5(n+1)
=>5n+11-(5n+5)
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)
=>n+1 thuộc{1,2,3,6}
=>n thuộc {0,1,2,5}
Giả sử 7n+10 và 5n+7 đều chia hết cho d
<=> 5(7n+10) và 7(5n+7) đều chia hết cho d
<=> 35n+50 và 35n+49 đều chia hết cho d
=> (35n+50) - (35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy \(\frac{7n+10}{5n+7}\)là phân số tối giản
Các phân số trên có dạng \(\frac{a}{n+2+a}\) với a = 6; 7; 8; ...; 65
\(\frac{a}{n+2+a}\)tối giản \(\Leftrightarrow\)ƯCLN(a; n+2+a) = 1 \(\Leftrightarrow\) ƯCLN(n+2; a) = 1
\(\Leftrightarrow\)n + 2 nguyên tố cùng nhau với mỗi số 6; 7; 8; ...; 65 và n + 2 nhỏ nhất
Do đó n + 2 = 67 (67 là số nguyên tố)
nên n = 65
mình k cho 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000 cái