Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(n=0\) không thỏa mãn
- Với \(n=1\) không thỏa mãn
- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)
- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5
Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP
Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu
Đặt n² - n + 13 = k²
<--> 4n² - 4n + 52 = 4k²
<--> (4n² - 4n + 1) + 51 = 4k²
<--> (2n - 1)² + 51 = 4k²
<--> 4k² - (2n - 1)^2 = 51
<--> (2k - 2n + 1)(2k + 2n - 1) = 51
<--> (2k - 2n + 1)(2k + 2n - 1) = 51.1
Vì 2k - 2n + 1 và 2k + 2n - 1 là những số nguyên nên:
{2k - 2n + 1 = 51
{2k + 2n - 1 = 1
hoặc:
{2k - 2n + 1 = - 51
{2k + 2n - 1 = - 1
Giải các hệ PT trên ta tìm được k và n (cần tìm)
\(n^2-2n-10\)
\(=n^2-2n+1-11\)
\(=\left(n-1\right)^2-11\)
12 , ủng hộ mk nha