Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Ta có
1/9.3^4.3^n=3^7
=> 1/3^2.3^4.3^n=3^7
=> 3^2.3^n=3^7
=>3^2+n=3^7
=> 2+n=7
=> n=5( tick nhé)
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
Bài 1: Bạn vào câu hỏi tương tự có câu trả lời của mình rồi đó.
Bài 2:
a) n+2 chia hết cho n
=>2 chia hết cho n
=>n=Ư(2)=(1,2)
b)3n+5 chia hết cho n
=>5 chia hết cho n
=>n=Ư(5)-(1,5)
c)14-3n chia hết cho n
=>14 chia hết cho n
=>n=Ư(14)=(1,2,7,14)
d)n+5 chia hết cho n+1
=>(n+1)+4 chia hết cho n+1
=>n+1=Ư(4)=(1,2,4)
=>n=(0,1,3)
e)3n+4 chia hết cho n-1
=>3n-3+3+4 chia hết cho n-1
=>3.(n-1)+7 chia hết cho n-1
=>7 chia hết cho n-1
=>n-1=Ư(7)=1,7)
=>n=(2,8)
f)2n+1 chia hết cho 16-2n
=>2n+1>16-2n
=>2n+1-2n>16-2n-2n
=>1>16-4n
=>16n-4n=0
=>4n=16
=>n=4
Lời giải:
$2^n+3^n=5^n$
$\Rightarrow (\frac{2}{5})^n+(\frac{3}{5})^n=1$
Nếu $n> 1$ thì:
$(\frac{2}{5})^n< \frac{2}{5}$
$(\frac{3}{5})^n< \frac{3}{5}$
$\Rightarrow (\frac{2}{5})^n+(\frac{3}{5})^n< \frac{2}{5}+\frac{3}{5}=1$ (loại)
Do đó $n\leq 1$
Mà $n$ là số tự nhiên nên $n=0$ hoặc $n=1$
Thử 2 giá trị $0,1$ thấy $n=1$ thỏa mãn.
# Mik làm ý A trước nhé, mik sợ dài :
- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )
- Giả sử đẳng thức cũng đúng với\(n=k\)hay :
\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)
Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :
\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)
Thật vậy, ta có:
\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)
\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )
# giờ mik làm ý B nha !
- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )
Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :
1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)
Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :
13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)
Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)
\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )
\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )
\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng
Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)
\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )
a, n2 + 2n + 4 chia hết cho n+1
=> n(n+1)+n+4 chia hết cho n+1
=> n(n+1)+n+1+3 chia hết cho n+1
=> (n+1).(n+1)+3 chia hết cho n+1
Vì (n+1)(n+1) chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc Ư(3)
=> n+1 thuộc {1; -1; -3; 3}
Mà n thuộc N
=> n thuộc {0; 2}
b, 2n2 + 10n + 20 chia hết cho 2n+3
n(2n+3)+7n+20 chia hết cho 2n+3
Vì n(2n+3) chia hết cho 2n+3
=> 7n+20 chia hết cho 2n+3
=> 14n+40 chia hết cho 2n+3
=> 14n+21+19 chia hết cho 2n+3
=> 7.(2n+3)+19 chia hết cho 2n+3
Vì 7.(2n+3) chia hết cho 2n+3
=> 19 chia hết cho 2n+3
=> 2n+3 thuộc Ư(19)
=> 2n+3 thuộc {1; -1; 19; -19}
=> 2n thuộc {-2; -4; 16; -22}
Mà n thuộc N
=> n = 8
Gọi d =(A=2n-1;B=9n+4)
=> A chia hết cho d; B chia hết cho d;
vì (2;9) =1
Ta có : 2B- 9A = 18n +8 -18n +9 =17 chia hết cho d
=> d =1 hoặc d =17
Nếu A hoạc B chia hết cho 17 => UCLN(A;B) =17
Nếu A hoạc B không chia hết cho 17 => UCLN(A;B) =1
Gọi d =(A=2n-1;B=9n+4)
=> A chia hết cho d;
B chia hết cho d; vì (2;9) =1
Ta có : 2B- 9A = 18n +8 -18n +9 =17 chia hết cho d
=> d =1 hoặc d =17
Nếu A hoạc B chia hết cho 17
=> UCLN(A;B) =17
Nếu A hoạc B không chia hết cho 17
=> UCLN(A;B) =1
a)
1/9 . 34.3n=37
=>3-2.34.3n=37
=>3-2+4+n=37
=>-2+4+n=7
=>n=7-(-2)-4
=>n=5