Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(8x-1\right)^{2n+1}=5^{2n+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow8x=6\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)
\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)
b) \(2^{n+1}+4.2^n=3.2^7\)
\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)
c) \(3^{n+2}-3^{n+1}=486\)
\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)
\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)
d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)
\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)
Bài 1
Ta có:\(\left(x^2-x+a\right)\left(x+1\right)=x^3+x^2-x^2-x+ax+a=x^3-x\left(a-1\right)+a\)
Khi đó:
\(x^3+x\left(1-a\right)+a=bx^2+cx+2\)
Do đó \(1-a=c;a=2;b=0\Rightarrow a=2;b=0;c=-1\)
Bài 2:
\(A=\left(n^2+2n-5\right)\left(n+2\right)-2n^3+n+10\)
\(=n^3+2n^2+2n^2+4n-5n-10-2n^3+n+10\)
\(=-n^3+4n^2\)
\(=n^2\left(4-n\right)\)
Lập luận với n chẵn thì cái trên luôn chia hết cho 8
1. ( x2 - x + a )( x + 1 ) = x3 + bx2 + cx + 2
<=> x3 + x2 - x2 - x + ax + a = x3 + bx2 + cx + 2
<=> x3 + 0x2 + ( a - 1 )x + a = x3 + bx2 + cx + 2
<=> \(\hept{\begin{cases}b=0\\a-1=c\\a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\\c=1\end{cases}}\)
2. n chẵn => n có dạng 2k ( \(k\inℕ^∗\))
Thế vào ta được :
A = [ ( 2k )2 + 2.2k - 5 )( 2k + 2 ) - 2(2k)3 + 2k + 10
A = ( 4k2 + 4k - 5 )( 2k + 2 ) - 16k3 + 2k + 10
A = 8k3 + 16k2 - 2k - 10 - 16k3 + 2k + 10
A = -8k3 + 16k2 = -8k2(k-2) \(⋮\)8
=> A chia hết cho 8 với mọi n chẵn ( đpcm )
Bài làm :
Ta có :
\(\left(8x-1\right)^{2n+1}=5^{2n+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow8x=5+1\)
\(\Leftrightarrow8x=6\)
\(\Leftrightarrow x=\frac{6}{8}=\frac{3}{4}\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có :
\(\left\{{}\begin{matrix}3n+4⋮2n+1\\2n+1⋮2n+1\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}2\left(3n+4\right)⋮2n+1\\3\left(2n+1\right)⋮2n+1\end{matrix}\right.\\ \rightarrow2\left(3n+4\right)-3\left(2n+1\right)⋮2n+1\\ \rightarrow5⋮2n+1\\ \rightarrow\left\{{}\begin{matrix}2n+1\inƯ\left(5\right)\\2n+1\in N\end{matrix}\right.\\ \rightarrow2n+1\in\left\{1;5\right\}\)
Vậy `n = 0` hoặc `n=2`
=>6n+8 chia hết cho 2n+1
=>6n+3+5 chia hết cho 2n+1
mà n là số tự nhiên
nên \(2n+1\in\left\{1;5\right\}\)
=>\(n\in\left\{0;2\right\}\)
Đặt A = 2.22 + 3.23 + 4.24 + ... + n.2n
2A = 2.23 + 3.24 + 4.25 + ... + n.2n+1
2A - A = (2.23 - 3.23) + (3.24 - 4.24) + ... + [(n-1).2n - n.2n] + n.2n+1
A = -23 - 24 - ... - 2n + n.2n+1 - 2.22
A = n.2n+1 - (23 + 24 + 25 + ... + 2n) - 23
Đặt B = 23 + 24 + ... + 2n
2B = 24 + 25 + ... + 2n+1
2B - B = 24 + 25 + ... + 2n+1 - 23 - 24 - 2n
B = 2n+1 - 23
Mà A = n.2n+1 - (23 + 24 + 25 + ... + 2n) - 23
=> A = n.2n+1 - B - 23
=> A = n.2n+1 - (2n+1 - 23) - 23
A = n.2n+1 - 2n+1 + 23 - 23
A = (n-1).2n+1
Mà 2.22+ 3.23 + 4.24 + 5.25 + · · · + n.2n = 2n+10
=> A = 2n+10
=> (n-1).2n+1 = 2n+10
(n-1) = 2n+10 : 2n+1
n-1 = 29
n = 512 + 1
n = 513
Nhận tớ một lạy Hải ạ!!! :)