K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

a) Áp dụng BĐT Bunhia ta có:

\(\left(3+1\right)\left(3x^2+y^2\right)\ge\left(3x+y\right)^2\)

<=> \(3x^2+y^2\ge3^2:4=\dfrac{9}{4}\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}3x+y=3\\x=y\end{matrix}\right.\) <=> \(x=y=\dfrac{3}{4}\)

b) Ta có: \(3x+y=3\) => \(y=3-3x\) (1)

Thay (1) vào N ta được:

N = \(2.\left(3-3x\right)x\) = \(6x-6x^2\) = \(-6\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}\)

= \(-6\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\) \(\le\) \(\dfrac{3}{2}\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=3-3x\\x=\dfrac{1}{2}\end{matrix}\right.\) <=> \(x=\dfrac{1}{2};y=\dfrac{3}{2}\)

3 tháng 3 2017

a) \(A=\dfrac{7}{3}\left(x^2+1\right)\)

Ta có:

\(x^2\ge0\forall x\\ \Rightarrow x^2+1\ge1\forall x\)

Để \(A=\dfrac{7}{3}\left(x^2+1\right)\) đạt GTNN thì \(x^2+1\) đạt GTNN

\(hay:x^2+1=1\)

Thay \(x^2+1=1\) vào \(A=\dfrac{7}{3}\left(x^2+1\right)\) ta có:

\(A=\dfrac{7}{3}.1\\ A=\dfrac{7}{3}\)

Vậy \(Max_A=\dfrac{7}{3}\) tại \(x=0\)

9 tháng 4 2017

A=15x2y2+7x2-8x3y2-12x2+11x3y2-12x2y2

= (15x2y2-12x2y2)+(7x2-12x2)+(-8x3y2+11x3y2)

= 3x2y2-5x2+3x3y2

Bậc của đa thức A: 5

Hệ số cao nhất: 3

B= \(3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+2xy^4-x^2y^3\)

=\(\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)

= 2,5x5y+\(\dfrac{7}{3}\)xy4-\(\dfrac{1}{4}\)x2y3

Bậc của đa thức B: 6

Hệ số cao nhất : \(\dfrac{7}{3}\)

9 tháng 9 2017

Câu 1/

\(\left\{{}\begin{matrix}\sqrt{\dfrac{4x}{5y}}=\sqrt{x+y}-\sqrt{x-y}\left(1\right)\\\sqrt{\dfrac{5y}{x}}=\sqrt{x+y}+\sqrt{x-y}\left(2\right)\end{matrix}\right.\)

Lấy (1).(2) vế theo vế được

\(\left(\sqrt{x+y}-\sqrt{x-y}\right)\left(\sqrt{x+y}+\sqrt{x-y}\right)=2\)

\(\Leftrightarrow x+y-\left(x-y\right)=2\)

\(\Leftrightarrow2y=2\)

\(\Leftrightarrow y=1\)

Thế vô tìm được x.

9 tháng 9 2017

Câu 2/ Đề chưa đủ. x, y, z thuộc R luôn à. Tìm min hay max hay là tìm cả 2.

18 tháng 1 2017

3x+y=1

y^2=1-6x+9x^2

a) M=12(x^2-2.1/4x+1/16)+1-12/16

GTNN=1-3/4=1/4 khi x=1/4=>y=1/4

b) N=xy=x(1-3x)=-3x^2+x=-3(x^2-2.1/6x+1/36)+3/36

GTLN =1/12 khi x=1/6 ;y=1/2

14 tháng 8 2020

a) M + (5x2 - 2xy) = 6x2 + 9xy - y2

=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)

=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = (6x2 - 5x2) + (9xy + 2xy) - y2 = x2 + 11xy - y2

b) Sửa đề lại đi nhé

c) (25x2y - 13x2y + y3) - M = 11x2y - 2y2

=> M = (25x2y - 13x2y + y3) - (11x2y - 2y2)

=> M = 25x2y - 13x2y + y3 - 11x2y + 2y2

=> M = x2y + y3 + 2y2

d) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7

14 tháng 8 2020

a) Ta có : M = 6x2 + 9xy - y2 - (5x2 - 2xy)

                    =  6x2 + 9xy - y2 - 5x2 + 2xy

                    = x2 + 11xy - y2

b) Ta có M = x2 - 7xy + 8y2 - (3xy - 24y2)

                 = x2 - 7xy + 8y2 - 3xy + 24y2

                  = x2 - 10xy + 32y2

c) Ta có M = 25x2.y- 13x2y + y3 - (11x2y - 2y2)

                  = 25x2.y- 13x2y + y3 - 11x2y + 2y2

                 = x2y + y3 + 2y2

d) Ta có M = -(12x4 - 15x2y + 2xy2 + 7)

                 =  -12x4 + 15x2y - 2xy2 - 7

9 tháng 7 2017

Ace Legona, Đoàn Đức Hiếu