K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

24 tháng 11 2019

\(A=x^2+4x+100\)

\(A=x\left(x+4\right)+100\ge100\)

Dấu " = " xảy ra 

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

Vậy Min A = 100 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

24 tháng 11 2019

\(B=-2x^2+6x-4\)

\(B=2x\left(3-x\right)-4\le-4\)

Dấu " = " xảy ra 

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy Max B = -4 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

25 tháng 9 2020

             Bài làm :

\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)

Vì (x-10)2 ≥ 0 với mọi x

\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)

Dấu "=" xảy ra khi

(x-10)2 = 0

<=> x-10=0

<=> x=10

Vậy GTNN của biểu thức là : 1920 <=> x=10

\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

Vì -(x-2)2 ≤ 0 với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảu ra khi :

x-2=0

<=> x=2

Vậy GTLN của biểu thức là -1 <=> x=2

25 tháng 9 2020

x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x

Dấu "=" xảy ra <=> x = 10 

Vậy GTNN của biểu thức = 1920 <=> x = 10

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x

Dấu "=" xảy ra <=> x = 2

Vậy GTLN của biểu thức = -1 <=> x = 2

1: \(=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)=-\left(x+1\right)^2-1< =-1\)

Dấu '=' xảy ra khi x=-1

2: \(=-\left(4x^2-12x-10\right)\)

\(=-\left(4x^2-12x+9-19\right)\)

\(=-\left(2x-3\right)^2+19< =19\)

Dấu '=' xảy ra khi x=3/2

3: \(=-\left(x^2+4x+4-4\right)=-\left(x+2\right)^2+4< =4\)

Dấu '=' xảy ra khi x=-2

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

20 tháng 6 2018

Những hằng đẳng thức đáng nhớ

20 tháng 6 2018

Giải:

5) \(-x^2+x-\dfrac{1}{2}\)

\(=-x^2+x-\dfrac{1}{4}+\dfrac{3}{4}\)

\(=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le\dfrac{3}{4}\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

6) \(-\dfrac{1}{4}x^2+x-2\)

\(=-\dfrac{1}{4}x^2+x-1-1\)

\(=-\left(\dfrac{1}{4}x^2-x+1\right)-1\)

\(=-\left(\dfrac{1}{2}x-1\right)^2-1\le-1\)

\(\Leftrightarrow\dfrac{1}{2}x-1=0\Leftrightarrow x=2\)

Vậy ...

7) \(-\dfrac{1}{9}x^2-\dfrac{1}{3}x+1\)

\(=-\dfrac{1}{9}x^2-\dfrac{1}{3}x-\dfrac{1}{4}+\dfrac{5}{4}\)

\(=-\left(\dfrac{1}{9}x^2+\dfrac{1}{3}x+\dfrac{1}{4}\right)+\dfrac{5}{4}\)

\(=-\left(\dfrac{1}{3}x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy ...

8) \(-2x^2+2xy-2y^2+2x+2y-8\)

\(=-x^2+2xy-y^2+2x-x^2+2y-y^2-1-1-6\)

\(=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-6\)

\(=-\left(x-y\right)^2-\left(x-1\right)^2-\left(y-1\right)^2-6\le-6\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)

Vậy ...

a: \(\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)=\left(2x+3y\right)^2:\left(2x+3y\right)=2x+3y\)

d: \(\left(x^2+6xy+9y^2\right):\left(x+3y\right)=\left(x+3y\right)^2:\left(x+3y\right)=x+3y\)

e: \(\dfrac{64y^3-27}{4y-3}=\dfrac{\left(4y-3\right)\left(16y^2+12y+9\right)}{4y-3}=16y^2+12y+9\)

17 tháng 8 2021

a, \(4x^2+12xy+9y^2=\left(2x+3y\right)^2\)

\(\Rightarrow\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)\)

\(=\left(2x+3y\right)^2:\left(2x+3y\right)\\ =2x+3y\)

b,\(x^2+6xy+9y^2=\left(x+3y\right)^2\)

\(\Rightarrow\left(x^2+6xy+9y^2\right):\left(x+3y\right)\\ =\left(x+3y\right)^2:\left(x+3y\right)\\ =x+3y\)

c, \(64y^3-27=\left(4y-3\right)\left(16y^2+12y+9\right)\)

\(\Rightarrow\left(64x^3-27\right):\left(4y-3\right)\\ =\left[\left(4y-3\right)\left(16x^2+12x+9\right)\right]:\left(4y-3\right)\\ =16x^2+12x+9\)

20 tháng 6 2018

Giải:

\(-x^2-2x-2\)

\(=-x^2-2x-1-1\)

\(=-\left(x^2+2x+1\right)-1\)

\(=-\left(x+1\right)^2-1\le-1\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ...

2) \(-4x^2+12x+10\)

\(=-4x^2+12x-9+19\)

\(=-\left(4x^2-12x+9\right)+19\)

\(=-\left(2x-3\right)^2+19\)

\(=19-\left(2x-3\right)^2\le19\)

\(\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy ...

3) \(-x^2-4x\)

\(=-x^2-4x-4+4\)

\(=-\left(x^2+4x+4\right)+4\)

\(=-\left(x+2\right)^2+4\le4\)

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy ...

4) \(-x^2+6x-5\)

\(=-x^2+6x-9+4\)

\(=-\left(x^2-6x+9\right)+4\)

\(=-\left(x-3\right)^2+4\le4\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy ...

21 tháng 12 2023

`#3107`

`a.`

`4x^2 - 6x = 2x(2x - 3)`

`b.`

`9x^4y^3 + 3x^2y^4 = 3x^2y^2(3x^2y + y^2)`

`c.`

`x^3 - 2x^2 + 5x`

`= x(x^2 - 2x + 5)`

21 tháng 12 2023

a) 4x² - 6x

= 2x(2x - 3)

b) 9x⁴y³ + 3x²y⁴

= 3x²y³(3x² + 3y)

c) x³ - 2x² + 5x

= x(x² - 2x + 5)

26 tháng 5 2018

cảm ơn bn nhiều!!!!