K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2021

a)\(y=\sqrt{3}sinx+cosx=2\left(\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\right)\)\(=2\left(sinx.cos\dfrac{\pi}{6}+cosx.sin\dfrac{\pi}{6}\right)\)\(=2sin\left(x+\dfrac{\pi}{6}\right)\)

Có \(-1\le sin\left(x+\dfrac{\pi}{6}\right)\le1\) \(\Leftrightarrow-2\le2sin\left(x+\dfrac{\pi}{6}\right)\le2\)

\(\Leftrightarrow-2\le y\le2\)

miny=-2 \(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=-1\)  \(\Leftrightarrow x+\dfrac{\pi}{6}=-\dfrac{\pi}{2}+2k\pi\left(k\in Z\right)\) \(\Leftrightarrow x=-\dfrac{2\pi}{3}+k2\pi\left(k\in Z\right)\)

maxy=2\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=1\) \(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)\(\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\left(k\in Z\right)\)

b) \(y=sin2x-cos2x=\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)\)

Có \(\sqrt{2}\ge\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)\ge-\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\ge y\ge-\sqrt{2}\)

miny=\(-\sqrt{2}\) \(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-1\)\(\Leftrightarrow2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)\(\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi\left(k\in Z\right)\)

maxy=\(\sqrt{2}\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=1\)\(\Leftrightarrow x=\dfrac{3\pi}{8}+k\pi\left(k\in Z\right)\)

c) \(y=3sinx+4cosx=5\left(\dfrac{3}{5}sinx+\dfrac{4}{5}cosx\right)\)

Đặt \(cosa=\dfrac{3}{5}\) và \(sina=\dfrac{4}{5}\)(vì cos2a+sin2a=1)

\(y=5\left(sinx.cosa+cosx.sina\right)\)\(=5sin\left(x+a\right)\)

\(\Rightarrow-5\le y\le5\)

miny=-5 <=> \(sin\left(x+a\right)=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}-arc.sina+k2\pi\left(k\in Z\right)\)

maxy=5 <=> \(sin\left(x+a\right)=1\)\(\Leftrightarrow x=\dfrac{\pi}{2}-arc.sina+k2\pi\left(k\in Z\right)\)

(P/s1:cái x ở câu c ấy trông nó ngu ngu??
 P/s2:sau khi load lại câu hỏi ở 1 tab khác ,thấy 1 câu trả lời nhưng vẫn đăng vì cảm thấy bỏ đi hơi phí :?)

21 tháng 5 2021

Áp dụng quy tắc sau: Nếu \(a\sin x+b\cos y=c\Leftrightarrow a^2+b^2\ge c^2\)

a/ \(3+1\ge y^2\Leftrightarrow4\ge y^2\Leftrightarrow-2\le y\le2\)

\(y_{max}=2\Leftrightarrow\sqrt{3}\sin x+\cos x=2\Leftrightarrow\dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x=1\Leftrightarrow\cos\dfrac{\pi}{6}.\sin x+\sin\dfrac{\pi}{6}.\cos x=1\)

\(\Rightarrow\sin\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\)

\(y_{min}=-2\Leftrightarrow\sin\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=-\dfrac{\pi}{2}+k2\pi\Leftrightarrow x=-\dfrac{2}{3}\pi+k2\pi\)

1: \(y=\sqrt{3}\cdot sin^2x-\left(1-sin^2x\right)+5\)

\(=sin^2x\left(\sqrt{3}+1\right)-1+5=sin^2x\left(\sqrt{3}+1\right)+4\)

\(0< =sin^2x< =1\)

=>\(0< =sin^2x\left(\sqrt{3}+1\right)< =\sqrt{3}+1\)

=>4<=y<=căn 3+5

y min=4 khi sin^2x=0

=>sin x=0

=>x=kpi

\(y_{max}=5+\sqrt{3}\) khi \(sin^2x=1\)

=>\(cos^2x=0\)

=>cosx=0

=>\(x=\dfrac{pi}{2}+kpi\)

2: \(y=5\left[\dfrac{3}{5}sinx+\dfrac{4}{5}cosx\right]+7\)

\(=5\cdot\left[sinx\cdot cosa+cosx\cdot sina\right]+7\)(Với cosa=3/5; sin a=4/5)

\(=5\cdot sin\left(x+a\right)+7\)

-1<=sin(x+a)<=1

=>-5<=5sin(x+a)<=5

=>-5+7<=y<=5+7

=>2<=y<=12

\(y_{min}=2\) khi sin (x+a)=-1

=>x+a=-pi/2+kp2i

=>\(x=-\dfrac{pi}{2}+k2pi-a\)

\(y_{max}=12\) khi sin(x+a)=1

=>x+a=pi/2+k2pi

=>\(x=\dfrac{pi}{2}+k2pi-a\)

NV
18 tháng 8 2021

ĐKXĐ: \(sinx;cosx\ge0\)

Do \(\left\{{}\begin{matrix}0\le sinx\le1\\0\le cosx\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{sinx}\ge sin^2x\\\sqrt{cosx}\ge cos^2x\end{matrix}\right.\)

\(\Rightarrow\sqrt{sinx}+\sqrt{cosx}\ge sin^2x+cos^2x=1\)

\(\Rightarrow y_{min}=1\) (khi \(x=\dfrac{\pi}{2}+k2\pi\) hoặc \(k2\pi\))

Mặt khác áp dụng Bunhiacopxki:

\(y\le\sqrt{2\left(sinx+cosx\right)}\le\sqrt{2\sqrt{2\left(sin^2x+cos^2x\right)}}=\sqrt[4]{8}\)

\(y_{max}=\sqrt[4]{8}\) khi \(x=\dfrac{\pi}{4}+k2\pi\)

16 tháng 8 2021

a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4

<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0

- sinx=1 => 2cos2x-2cosx+2=0 

pt trên vn

16 tháng 8 2021

b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0

<=> cos(2sinx-1)+2sin2x+3sinx-2=0

<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0

<=> (2sinx-1)(cosx+sinx+2)=0

<=> sinx=1/2 hoặc cosx+sinx=-2(vn)

<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)

loading...  loading...  loading...  loading...  loading...  loading...  

19 tháng 1 2017

Đáp án D

Hàm số xác định với mọi x

⇔  2sin2x + 4sinx cosx – (3 + 2m)cos2x + 2 ≤ 0 ∀x ∈ R  (1)

cos x = 0 => (1)  đúng

cos x ≠ 0 khi đó ta có: (1) ⇔ 2tan2x + 4tanx – (3 + 2m) + 2(1 + tan2x) ≥ 0

⇔ 4tan2x + 4tanx    1 + 2m ∀x ∈ R 

⇔ (2tanx + 1)2 ≥ 2 + 2m    ∀x ∈ R  ⇔ 2 + 2m ≤ 0 ⇔  m ≤ -1    

NV
6 tháng 10 2020

a.

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(sinx+cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=-1\\2cosx-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\cosx=\frac{3}{2}\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
6 tháng 10 2020

b.

\(\Leftrightarrow1+sinx+cosx+2sinx.cosx+2cos^2x-1=0\)

\(\Leftrightarrow sinx\left(2cosx+1\right)+cosx\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

1 tháng 6 2021

1.

\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)

\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)

\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)

Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)

\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)

1 tháng 6 2021

2.

\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)

\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)

\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

11 tháng 10 2023

loading...  loading...