Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2
= 2x^2-4xy+2y^2/x^2-xy+y^2
= 2.(x^2-2xy+y^2)/x^2-xy+y^2
= 2.(x-y)^2/x^2-xy+y^2
>= 0 ( vì x^2-xy+y^2 > 0 )
Dấu "=" xảy ra <=> x-y=0 <=> x=y
Vậy ..........
b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x
= (x-1995)^2 + 7980x >= 7980x
=> M < = x/7980x = 1/7980 ( vì x > 0 )
Dấu "=" xảy ra <=> x-1995=0 <=> x=1995
Vậy ...............
Bài 1:
Ta có:\(x^2+xy+y^2+1\)
\(=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x^2+\dfrac{1}{2}xy\right)+\left(\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2+1\)
\(=x.\left(x+\dfrac{1}{2}y\right)+\dfrac{1}{2}y.\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1>0\)
Hay \(x^2+xy+y^2+1>0\) (đpcm)
Chúc bạn học tốt!!!
\(C=\frac{x^2+xy+y^2}{x^2-xy+y^2}=\frac{3x^2-3xy+3y^2-2x^2+4xy-2y^2}{x^2-xy+y^2}=\frac{3\left(x^2-xy+y^2\right)-2\left(x^2-2xy+y^2\right)}{x^2-xy+y^2}\)
\(=3-\frac{2\left(x-y\right)^2}{x^2-xy+y^2}\le3\) có GTLN là 3