Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
- Với \(m=0\) hệ có nghiệm (vô số nghiệm)
- Với \(m=\dfrac{1}{2}\) hệ có nghiệm
Hệ phương trình \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) vô nghiệm khi \(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\)
- Với \(m\ne\left\{\dfrac{1}{2};0\right\}\) , xét điều kiện: \(\dfrac{a}{a'}=\dfrac{b}{b'}\)
Hay \(\dfrac{m^2}{m}=\dfrac{2-m}{2m-1}\Leftrightarrow m=\dfrac{2-m}{2m-1}\)
\(\Rightarrow m^2=1\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
+ Với \(m=1\Rightarrow\dfrac{m^2}{m}=\dfrac{2-m}{2m-1}=1\ne\dfrac{m^3+4}{m^5-2}=-5\) thỏa mãn hệ vô nghiệm
+ Với \(m=-1\) \(\Rightarrow\dfrac{m^2}{m}=\dfrac{2-m}{2m-1}=-1=\dfrac{m^3+4}{m^5-2}=-1\) ko thỏa mãn
Vậy \(m=1\) thì hệ vô nghiệm