Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{2x^2-2x+m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau
TH1: \(x_1\ge x_2\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)
\(\Leftrightarrow-4\le m\le5\)
TH2: \(x_1\ge-1>x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(-4\le m\le5\)
Bài 2.
ĐK: $x\geq \frac{-11}{2}$
$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$
\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)
\(\Delta'(*)=12\)
\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$
$\Rightarrow a=1; b=-2\Rightarrow ab=-2$
Bài 1.
Đặt $x^2+2x=t$ thì PT ban đầu trở thành:
$t^2-t-m=0(1)$
Để PT ban đầu có 4 nghiệm phân biệt thì:
Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$
Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt.
Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$
Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$
Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)
Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$
b)
Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$
PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$
Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$
Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$
c) Để PT ban đầu có nghiệm duy nhất thì:
\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất.
d)
Ngược lại phần b, $m\geq \frac{-1}{4}$
e)
Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$
$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$
ĐK: \(-\dfrac{1}{2}\le x\le3\)
\(pt\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}=6+m\)
Đặt \(\sqrt{-2x^2+5x+3}=t\left(0\le t\le\dfrac{7\sqrt{2}}{4}\right)\)
\(pt\Leftrightarrow6+m=f\left(t\right)=t^2+t\)
\(f\left(0\right)=0;f\left(\dfrac{7\sqrt{2}}{4}\right)=\dfrac{49+14\sqrt{2}}{8}\)
Yêu cầu bài toán thỏa mãn khi:
\(0\le6+m\le\dfrac{49+14\sqrt{2}}{8}\)
\(\Leftrightarrow-6\le m\le\dfrac{1+14\sqrt{2}}{8}\)
ĐKXĐ: \(\dfrac{-1}{2}\le x\le3\)\(\Rightarrow x\in\left[\dfrac{-1}{2};3\right]\)
ta có pt\(\Leftrightarrow\)\(\sqrt{-\left(2x^2-5x-3\right)}=2x^2-5x-3+6+m\)
Đặt \(\sqrt{-\left(2x^2-5x-3\right)}=t\ge0 \)
\(\Rightarrow-t^2=\left(2x^2-5x-3\right)\)
khi đó pt trở thành: \(t=-t^2+6+m\Leftrightarrow t^2+t-6-m=0\left(1\right)\)
để pt đã cho có nghiệm thì pt (1) có nghiệm
khi đó \(\Delta'=m+15\ge0\Leftrightarrow m\ge15\)
Vậy ....
\(\sqrt{2x+7m}=x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+7m=x^2+4x+4\\x+2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x+4=7m\left(1\right)\\x\ge-2\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-2\)
Bảng biến thiên:
Dựa vào bảng biến thiên ta được \(7m\ge3\Leftrightarrow m\ge\dfrac{3}{7}\)
ĐK; \(-1\le x\le3\)
Đặt \(\sqrt{-x^2+2x+3}=t\left(0\le t\le2\right)\)
\(pt\Leftrightarrow m+1=-x^2+2x+3+4\sqrt{-x^2+2x+3}\)
\(\Leftrightarrow m+1=f\left(t\right)=t^2+4t\)
\(f\left(0\right)=0;f\left(2\right)=12\)
Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m+1\le maxf\left(t\right)\)
\(\Leftrightarrow0\le m+1\le12\)
\(\Leftrightarrow-1\le m\le11\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\2x^2-2x+m=\left(x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\-x^2+4x+1=m\end{matrix}\right.\)
Xét hàm \(f\left(x\right)=-x^2+4x+1\) với \(x\ge-1\)
\(-\dfrac{b}{2a}=2>-1\) ; \(f\left(-1\right)=-4\) ; \(f\left(2\right)=5\)
\(\Rightarrow f\left(x\right)\le5\) ;\(\forall x\ge-1\)
\(\Rightarrow\) Pt đã cho có nghiệm khi \(m\le5\)